分数阶微分方程求解器/Matlab

M. Sowa, A. Kawala-Janik, W. Bauer
{"title":"分数阶微分方程求解器/Matlab","authors":"M. Sowa, A. Kawala-Janik, W. Bauer","doi":"10.1109/MMAR.2018.8485964","DOIUrl":null,"url":null,"abstract":"This paper concerns solvers for time fractional differential equations in Matlab and Octave. The main analysis revolves around a time step size adaptive solver basing on the numerical method called SubIval. The basis of SubIval is explained and formulae for the step size adaptivity are given. The solver is compared with others basing on: fractional linear multistep methods, product integration rules and the Grünwald-Letnikov approximation.","PeriodicalId":201658,"journal":{"name":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fractional Differential Equation Solvers in Octave/Matlab\",\"authors\":\"M. Sowa, A. Kawala-Janik, W. Bauer\",\"doi\":\"10.1109/MMAR.2018.8485964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns solvers for time fractional differential equations in Matlab and Octave. The main analysis revolves around a time step size adaptive solver basing on the numerical method called SubIval. The basis of SubIval is explained and formulae for the step size adaptivity are given. The solver is compared with others basing on: fractional linear multistep methods, product integration rules and the Grünwald-Letnikov approximation.\",\"PeriodicalId\":201658,\"journal\":{\"name\":\"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2018.8485964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2018.8485964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文讨论了在Matlab和Octave中求解时间分数阶微分方程的方法。主要分析围绕一个时间步长自适应求解器的数值方法称为subbival。说明了subbival的基础,给出了步长自适应的计算公式。基于分数阶线性多步法、积积分规则和粗糙的nwald- letnikov近似,与其他求解器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Differential Equation Solvers in Octave/Matlab
This paper concerns solvers for time fractional differential equations in Matlab and Octave. The main analysis revolves around a time step size adaptive solver basing on the numerical method called SubIval. The basis of SubIval is explained and formulae for the step size adaptivity are given. The solver is compared with others basing on: fractional linear multistep methods, product integration rules and the Grünwald-Letnikov approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信