Yoshiaki Bando, Katsutoshi Itoyama, M. Konyo, S. Tadokoro, K. Nakadai, Kazuyoshi Yoshii, HIroshi G. Okuno
{"title":"变分贝叶斯多通道鲁棒NMF用于可变形和部分遮挡麦克风阵列的人声增强","authors":"Yoshiaki Bando, Katsutoshi Itoyama, M. Konyo, S. Tadokoro, K. Nakadai, Kazuyoshi Yoshii, HIroshi G. Okuno","doi":"10.1109/EUSIPCO.2016.7760402","DOIUrl":null,"url":null,"abstract":"This paper presents a human-voice enhancement method for a deformable and partially-occluded microphone array. Although microphone arrays distributed on the long bodies of hose-shaped rescue robots are crucial for finding victims under collapsed buildings, human voices captured by a microphone array are contaminated by non-stationary actuator and friction noise. Standard blind source separation methods cannot be used because the relative microphone positions change over time and some of them are occasionally shaded by rubble. To solve these problems, we develop a Bayesian model that separates multichannel amplitude spectrograms into sparse and low-rank components (human voice and noise) without using phase information, which depends on the array layout. The voice level at each microphone is estimated in a time-varying manner for reducing the influence of the shaded microphones. Experiments using a 3-m hose-shaped robot with eight microphones show that our method outperforms conventional methods by the signal-to-noise ratio of 2.7 dB.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Variational Bayesian multi-channel robust NMF for human-voice enhancement with a deformable and partially-occluded microphone array\",\"authors\":\"Yoshiaki Bando, Katsutoshi Itoyama, M. Konyo, S. Tadokoro, K. Nakadai, Kazuyoshi Yoshii, HIroshi G. Okuno\",\"doi\":\"10.1109/EUSIPCO.2016.7760402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a human-voice enhancement method for a deformable and partially-occluded microphone array. Although microphone arrays distributed on the long bodies of hose-shaped rescue robots are crucial for finding victims under collapsed buildings, human voices captured by a microphone array are contaminated by non-stationary actuator and friction noise. Standard blind source separation methods cannot be used because the relative microphone positions change over time and some of them are occasionally shaded by rubble. To solve these problems, we develop a Bayesian model that separates multichannel amplitude spectrograms into sparse and low-rank components (human voice and noise) without using phase information, which depends on the array layout. The voice level at each microphone is estimated in a time-varying manner for reducing the influence of the shaded microphones. Experiments using a 3-m hose-shaped robot with eight microphones show that our method outperforms conventional methods by the signal-to-noise ratio of 2.7 dB.\",\"PeriodicalId\":127068,\"journal\":{\"name\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2016.7760402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Variational Bayesian multi-channel robust NMF for human-voice enhancement with a deformable and partially-occluded microphone array
This paper presents a human-voice enhancement method for a deformable and partially-occluded microphone array. Although microphone arrays distributed on the long bodies of hose-shaped rescue robots are crucial for finding victims under collapsed buildings, human voices captured by a microphone array are contaminated by non-stationary actuator and friction noise. Standard blind source separation methods cannot be used because the relative microphone positions change over time and some of them are occasionally shaded by rubble. To solve these problems, we develop a Bayesian model that separates multichannel amplitude spectrograms into sparse and low-rank components (human voice and noise) without using phase information, which depends on the array layout. The voice level at each microphone is estimated in a time-varying manner for reducing the influence of the shaded microphones. Experiments using a 3-m hose-shaped robot with eight microphones show that our method outperforms conventional methods by the signal-to-noise ratio of 2.7 dB.