一种代价敏感的入侵检测学习算法

S. Ghodratnama, M. Moosavi, M. Taheri, M. Zolghadri Jahromi
{"title":"一种代价敏感的入侵检测学习算法","authors":"S. Ghodratnama, M. Moosavi, M. Taheri, M. Zolghadri Jahromi","doi":"10.1109/IRANIANCEE.2010.5507006","DOIUrl":null,"url":null,"abstract":"In this paper, a novel cost-sensitive learning algorithm is proposed to improve the performance of the nearest neighbor rule for intrusion detection. The goal of the learning algorithm is to minimize the total cost of misclassifications in leave-one-out test. This is important since in intrusion detection systems, the performance of the classifier on test data is usually evaluated by computing the total misclassification cost instead of the number of misclassified patterns. In our approach, the distance function is defined in a parametric form. The free parameters of the distance function (e.g. features and instances weights) are learned by our proposed method that attempt to minimize the average cost per example. The KDD99 dataset is used to assess the performance of the proposed method.","PeriodicalId":282587,"journal":{"name":"2010 18th Iranian Conference on Electrical Engineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A cost sensitive learning algorithm for intrusion detection\",\"authors\":\"S. Ghodratnama, M. Moosavi, M. Taheri, M. Zolghadri Jahromi\",\"doi\":\"10.1109/IRANIANCEE.2010.5507006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel cost-sensitive learning algorithm is proposed to improve the performance of the nearest neighbor rule for intrusion detection. The goal of the learning algorithm is to minimize the total cost of misclassifications in leave-one-out test. This is important since in intrusion detection systems, the performance of the classifier on test data is usually evaluated by computing the total misclassification cost instead of the number of misclassified patterns. In our approach, the distance function is defined in a parametric form. The free parameters of the distance function (e.g. features and instances weights) are learned by our proposed method that attempt to minimize the average cost per example. The KDD99 dataset is used to assess the performance of the proposed method.\",\"PeriodicalId\":282587,\"journal\":{\"name\":\"2010 18th Iranian Conference on Electrical Engineering\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 18th Iranian Conference on Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANCEE.2010.5507006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th Iranian Conference on Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2010.5507006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

为了提高入侵检测中最近邻规则的性能,提出了一种新的代价敏感学习算法。学习算法的目标是最小化留一测试中错误分类的总代价。这一点很重要,因为在入侵检测系统中,分类器对测试数据的性能通常是通过计算总错误分类代价来评估的,而不是通过计算错误分类模式的数量来评估的。在我们的方法中,距离函数以参数形式定义。距离函数的自由参数(例如特征和实例权重)是通过我们提出的最小化每个例子的平均代价的方法来学习的。使用KDD99数据集来评估所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cost sensitive learning algorithm for intrusion detection
In this paper, a novel cost-sensitive learning algorithm is proposed to improve the performance of the nearest neighbor rule for intrusion detection. The goal of the learning algorithm is to minimize the total cost of misclassifications in leave-one-out test. This is important since in intrusion detection systems, the performance of the classifier on test data is usually evaluated by computing the total misclassification cost instead of the number of misclassified patterns. In our approach, the distance function is defined in a parametric form. The free parameters of the distance function (e.g. features and instances weights) are learned by our proposed method that attempt to minimize the average cost per example. The KDD99 dataset is used to assess the performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信