使用患者评论数据集的计算药物重新定位工作

Ali Akkaya, Gokhan Bakal
{"title":"使用患者评论数据集的计算药物重新定位工作","authors":"Ali Akkaya, Gokhan Bakal","doi":"10.1109/SmartNets58706.2023.10215985","DOIUrl":null,"url":null,"abstract":"The drug discovery process is one of the core motivations in both medical and, specifically, pharmaceutical disciplines. Due to the nature of the process, it requires an excessive amount of time, clinical experiments, and budget to cover each discovery phase. In this sense, computational drug discovery efforts can shorten the discovery process by providing plausible candidates since many of the attempts fail for several reasons, such as a lack of participants, financial problems, or ineffective results. In this study, the goal is to identify plausible candidate drugs for diseases. To do that, we utilize a personal experience of drugs dataset generated by patients. Beyond the user-generated comments, the users also give a rate between 1 and 10. Since we want to ensure the dataset quality, we first performed sentiment analysis experiments to prove that the reviews/comments are consistent with the given rating score. Then, only the review pairs having an effectiveness rate of 6 or more are selected as pre-filtered drug-disease pairs. We also build a knowledge graph using treatment-related biomedical relations using predications from Semantic Medline Database to identify drug similarities utilizing the Simrank similarity algorithm. As a result, we reported a list of plausible drugs as repurposing/repositioning candidates for further experiments.","PeriodicalId":301834,"journal":{"name":"2023 International Conference on Smart Applications, Communications and Networking (SmartNets)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computational Drug Repositioning Effort using Patients’ Reviews Dataset\",\"authors\":\"Ali Akkaya, Gokhan Bakal\",\"doi\":\"10.1109/SmartNets58706.2023.10215985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The drug discovery process is one of the core motivations in both medical and, specifically, pharmaceutical disciplines. Due to the nature of the process, it requires an excessive amount of time, clinical experiments, and budget to cover each discovery phase. In this sense, computational drug discovery efforts can shorten the discovery process by providing plausible candidates since many of the attempts fail for several reasons, such as a lack of participants, financial problems, or ineffective results. In this study, the goal is to identify plausible candidate drugs for diseases. To do that, we utilize a personal experience of drugs dataset generated by patients. Beyond the user-generated comments, the users also give a rate between 1 and 10. Since we want to ensure the dataset quality, we first performed sentiment analysis experiments to prove that the reviews/comments are consistent with the given rating score. Then, only the review pairs having an effectiveness rate of 6 or more are selected as pre-filtered drug-disease pairs. We also build a knowledge graph using treatment-related biomedical relations using predications from Semantic Medline Database to identify drug similarities utilizing the Simrank similarity algorithm. As a result, we reported a list of plausible drugs as repurposing/repositioning candidates for further experiments.\",\"PeriodicalId\":301834,\"journal\":{\"name\":\"2023 International Conference on Smart Applications, Communications and Networking (SmartNets)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Smart Applications, Communications and Networking (SmartNets)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartNets58706.2023.10215985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Smart Applications, Communications and Networking (SmartNets)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartNets58706.2023.10215985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

药物发现过程是医学,特别是药学学科的核心动机之一。由于该过程的性质,它需要大量的时间、临床实验和预算来覆盖每个发现阶段。从这个意义上讲,计算药物发现工作可以通过提供合理的候选药物来缩短发现过程,因为许多尝试由于缺乏参与者、财务问题或无效结果等原因而失败。在这项研究中,目标是确定合理的候选药物的疾病。为此,我们利用患者生成的个人用药经验数据集。除了用户生成的评论之外,用户还给出了1到10之间的评分。由于我们想要保证数据集的质量,我们首先进行了情感分析实验来证明评论/评论与给定的评级分数是一致的。然后,只选择有效率大于等于6的综述对作为预过滤的药物-疾病对。我们还利用来自Semantic Medline数据库的预测,利用治疗相关的生物医学关系构建了一个知识图谱,利用simmrank相似度算法识别药物相似度。因此,我们报告了一份合理的药物清单,作为进一步实验的重新定位/重新定位候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computational Drug Repositioning Effort using Patients’ Reviews Dataset
The drug discovery process is one of the core motivations in both medical and, specifically, pharmaceutical disciplines. Due to the nature of the process, it requires an excessive amount of time, clinical experiments, and budget to cover each discovery phase. In this sense, computational drug discovery efforts can shorten the discovery process by providing plausible candidates since many of the attempts fail for several reasons, such as a lack of participants, financial problems, or ineffective results. In this study, the goal is to identify plausible candidate drugs for diseases. To do that, we utilize a personal experience of drugs dataset generated by patients. Beyond the user-generated comments, the users also give a rate between 1 and 10. Since we want to ensure the dataset quality, we first performed sentiment analysis experiments to prove that the reviews/comments are consistent with the given rating score. Then, only the review pairs having an effectiveness rate of 6 or more are selected as pre-filtered drug-disease pairs. We also build a knowledge graph using treatment-related biomedical relations using predications from Semantic Medline Database to identify drug similarities utilizing the Simrank similarity algorithm. As a result, we reported a list of plausible drugs as repurposing/repositioning candidates for further experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信