{"title":"单值三角形中性粒细胞集(svtns)下太阳干燥屏障识别与排序的综合多准则决策方法","authors":"Shimaa Said, M. Ibrahim, Mahmoud M. Ismail","doi":"10.54216/nif.020103","DOIUrl":null,"url":null,"abstract":"Solar dryers utilized in agriculture for the drying of food and crops are also utilized for drying operations in industrial settings. They have the potential to be shown as a very helpful tool in terms of the management of energy saving. It not only helps conserve energy, but it also helps save a lot of time, consumes less space, makes the procedure more effective, enhances the standard of the product, and safeguards the surroundings. Due to the many associated potential barriers, the acceptance of solar dryers has not yet reached a benchmark, although this was an expectation. In this body of work, a methodical framework that makes use of the MCDM tools has been proposed to identify and rank several obstacles in descending order of importance.The AHP can identify both quantitative and qualitative aspects by using comparison matrices to assign weights to them and rank them in order of importance. The AHP technique is used to calculate the weights and relationship of the solar drying barrier. To account for the lack of clarity and coherence in the data that is available in the actual world, we tested the suggested model in a neutrosophic set. We used the single-valued triangular neutrosophic sets (SVTNSs). SVTNSs are a type of neutrosophic set, integrated into triangular neutrosophic sets and SVNSs. The application of applying the SVNSs-AHP is performed.","PeriodicalId":270575,"journal":{"name":"Neutrosophic and Information Fusion","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Integrated Multi-Criteria Decision-Making Approach for Identification and Ranking Solar Drying Barriers under Single-Valued Triangular Neutrosophic Sets (SVTNSs)\",\"authors\":\"Shimaa Said, M. Ibrahim, Mahmoud M. Ismail\",\"doi\":\"10.54216/nif.020103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar dryers utilized in agriculture for the drying of food and crops are also utilized for drying operations in industrial settings. They have the potential to be shown as a very helpful tool in terms of the management of energy saving. It not only helps conserve energy, but it also helps save a lot of time, consumes less space, makes the procedure more effective, enhances the standard of the product, and safeguards the surroundings. Due to the many associated potential barriers, the acceptance of solar dryers has not yet reached a benchmark, although this was an expectation. In this body of work, a methodical framework that makes use of the MCDM tools has been proposed to identify and rank several obstacles in descending order of importance.The AHP can identify both quantitative and qualitative aspects by using comparison matrices to assign weights to them and rank them in order of importance. The AHP technique is used to calculate the weights and relationship of the solar drying barrier. To account for the lack of clarity and coherence in the data that is available in the actual world, we tested the suggested model in a neutrosophic set. We used the single-valued triangular neutrosophic sets (SVTNSs). SVTNSs are a type of neutrosophic set, integrated into triangular neutrosophic sets and SVNSs. The application of applying the SVNSs-AHP is performed.\",\"PeriodicalId\":270575,\"journal\":{\"name\":\"Neutrosophic and Information Fusion\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neutrosophic and Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54216/nif.020103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neutrosophic and Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/nif.020103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Integrated Multi-Criteria Decision-Making Approach for Identification and Ranking Solar Drying Barriers under Single-Valued Triangular Neutrosophic Sets (SVTNSs)
Solar dryers utilized in agriculture for the drying of food and crops are also utilized for drying operations in industrial settings. They have the potential to be shown as a very helpful tool in terms of the management of energy saving. It not only helps conserve energy, but it also helps save a lot of time, consumes less space, makes the procedure more effective, enhances the standard of the product, and safeguards the surroundings. Due to the many associated potential barriers, the acceptance of solar dryers has not yet reached a benchmark, although this was an expectation. In this body of work, a methodical framework that makes use of the MCDM tools has been proposed to identify and rank several obstacles in descending order of importance.The AHP can identify both quantitative and qualitative aspects by using comparison matrices to assign weights to them and rank them in order of importance. The AHP technique is used to calculate the weights and relationship of the solar drying barrier. To account for the lack of clarity and coherence in the data that is available in the actual world, we tested the suggested model in a neutrosophic set. We used the single-valued triangular neutrosophic sets (SVTNSs). SVTNSs are a type of neutrosophic set, integrated into triangular neutrosophic sets and SVNSs. The application of applying the SVNSs-AHP is performed.