{"title":"6- t2 - mtj三进制内容可寻址存储器的设计与分析","authors":"Rekha Govindaraj, Swaroop Ghosh","doi":"10.1109/ISLPED.2015.7273532","DOIUrl":null,"url":null,"abstract":"Content Addressable Memory (CAM) is widely used in pattern matching, internet data processing and many other fields where searching a specific pattern of data is a major operation. Conventional CAMs suffer from area, power, and speed limitations. We propose a magnetic tunnel junction (MTJ) based Ternary CAM (TCAM). The proposed TCAM cell is 127 percent (33 percent) area efficient compared to conventional CMOS TCAM (spintronic TCAMs). We analyzed sense margin of the proposed TCAM with respect to 16, 32, 64, 128 and 256-bit words sizes in 22nm predictive technology. Simulations indicated reliable sense margin of 50mV even at 0.7V supply voltage. The worst case sense delay and sense margin of 256-bit TCAM is found to be 263ps and 220mV respectively at 1V supply voltage. The average search power consumed is 13mW and the search energy is 4.7fJ per bit search. The write time is 4ns and the write energy is 0.69pJ per bit.","PeriodicalId":421236,"journal":{"name":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Design and analysis of 6-T 2-MTJ ternary Content Addressable Memory\",\"authors\":\"Rekha Govindaraj, Swaroop Ghosh\",\"doi\":\"10.1109/ISLPED.2015.7273532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Content Addressable Memory (CAM) is widely used in pattern matching, internet data processing and many other fields where searching a specific pattern of data is a major operation. Conventional CAMs suffer from area, power, and speed limitations. We propose a magnetic tunnel junction (MTJ) based Ternary CAM (TCAM). The proposed TCAM cell is 127 percent (33 percent) area efficient compared to conventional CMOS TCAM (spintronic TCAMs). We analyzed sense margin of the proposed TCAM with respect to 16, 32, 64, 128 and 256-bit words sizes in 22nm predictive technology. Simulations indicated reliable sense margin of 50mV even at 0.7V supply voltage. The worst case sense delay and sense margin of 256-bit TCAM is found to be 263ps and 220mV respectively at 1V supply voltage. The average search power consumed is 13mW and the search energy is 4.7fJ per bit search. The write time is 4ns and the write energy is 0.69pJ per bit.\",\"PeriodicalId\":421236,\"journal\":{\"name\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISLPED.2015.7273532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2015.7273532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and analysis of 6-T 2-MTJ ternary Content Addressable Memory
Content Addressable Memory (CAM) is widely used in pattern matching, internet data processing and many other fields where searching a specific pattern of data is a major operation. Conventional CAMs suffer from area, power, and speed limitations. We propose a magnetic tunnel junction (MTJ) based Ternary CAM (TCAM). The proposed TCAM cell is 127 percent (33 percent) area efficient compared to conventional CMOS TCAM (spintronic TCAMs). We analyzed sense margin of the proposed TCAM with respect to 16, 32, 64, 128 and 256-bit words sizes in 22nm predictive technology. Simulations indicated reliable sense margin of 50mV even at 0.7V supply voltage. The worst case sense delay and sense margin of 256-bit TCAM is found to be 263ps and 220mV respectively at 1V supply voltage. The average search power consumed is 13mW and the search energy is 4.7fJ per bit search. The write time is 4ns and the write energy is 0.69pJ per bit.