Вячеслав Зигмундович Гринес, Vyacheslav Zigmuntovich Grines, Андрей Игоревич Морозов, Andrei Igorevich Morozov, Ольга Витальевна Починка, O. Pochinka
{"title":"莫尔斯-斯迈耶代数有限阶同形实现","authors":"Вячеслав Зигмундович Гринес, Vyacheslav Zigmuntovich Grines, Андрей Игоревич Морозов, Andrei Igorevich Morozov, Ольга Витальевна Починка, O. Pochinka","doi":"10.4213/tm4234","DOIUrl":null,"url":null,"abstract":"Согласно классификации Тeрстона множество гомотопических классов гомеоморфизмов замкнутых ориентируемых поверхностей отрицательной кривизны разбивается на четыре непересекающихся подмножества $T_1$, $T_2$, $T_3$, $T_4$. Гомотопический класс из каждого подмножества характеризуется существованием в нем гомеоморфизма (канонической формы Тeрстона), имеющего в точности один из следующих типов соответственно: периодический гомеоморфизм, приводимый непериодический гомеоморфизм алгебраически конечного порядка, приводимый гомеоморфизм, не являющийся гомеоморфизмом алгебраически конечного порядка, псевдоаносовский гомеоморфизм. Канонические формы Тeрстона не являются структурно устойчивыми диффеоморфизмами. Поэтому естественно возникает задача построения простейших (в определенном смысле) структурно устойчивых диффеоморфизмов в каждом гомотопическом классе. А.Н. Безденежных и В.З. Гринес построили градиентно-подобный диффеоморфизм в каждом гомотопическом классе из $T_1$. А.Ю. Жиров и Р.В. Плыкин анонсировали метод построения структурно устойчивого диффеоморфизма в каждом гомотопическом классе из $T_4$. Неблуждающее множество этого диффеоморфизма состоит из конечного числа источниковых орбит и единственного одномерного аттрактора. В настоящей работе описано построение структурно устойчивого диффеоморфизма в каждом гомотопическом классе из $T_2$. Построенный представитель является диффеоморфизмом Морса-Смейла с ориентируемым гетероклиническим пересечением.","PeriodicalId":134662,"journal":{"name":"Trudy Matematicheskogo Instituta imeni V.A. Steklova","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Реализация гомеоморфизмов поверхностей алгебраически конечного порядка диффеоморфизмами Морса-Смейла с ориентируемым гетероклиническим пересечением\",\"authors\":\"Вячеслав Зигмундович Гринес, Vyacheslav Zigmuntovich Grines, Андрей Игоревич Морозов, Andrei Igorevich Morozov, Ольга Витальевна Починка, O. Pochinka\",\"doi\":\"10.4213/tm4234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Согласно классификации Тeрстона множество гомотопических классов гомеоморфизмов замкнутых ориентируемых поверхностей отрицательной кривизны разбивается на четыре непересекающихся подмножества $T_1$, $T_2$, $T_3$, $T_4$. Гомотопический класс из каждого подмножества характеризуется существованием в нем гомеоморфизма (канонической формы Тeрстона), имеющего в точности один из следующих типов соответственно: периодический гомеоморфизм, приводимый непериодический гомеоморфизм алгебраически конечного порядка, приводимый гомеоморфизм, не являющийся гомеоморфизмом алгебраически конечного порядка, псевдоаносовский гомеоморфизм. Канонические формы Тeрстона не являются структурно устойчивыми диффеоморфизмами. Поэтому естественно возникает задача построения простейших (в определенном смысле) структурно устойчивых диффеоморфизмов в каждом гомотопическом классе. А.Н. Безденежных и В.З. Гринес построили градиентно-подобный диффеоморфизм в каждом гомотопическом классе из $T_1$. А.Ю. Жиров и Р.В. Плыкин анонсировали метод построения структурно устойчивого диффеоморфизма в каждом гомотопическом классе из $T_4$. Неблуждающее множество этого диффеоморфизма состоит из конечного числа источниковых орбит и единственного одномерного аттрактора. В настоящей работе описано построение структурно устойчивого диффеоморфизма в каждом гомотопическом классе из $T_2$. Построенный представитель является диффеоморфизмом Морса-Смейла с ориентируемым гетероклиническим пересечением.\",\"PeriodicalId\":134662,\"journal\":{\"name\":\"Trudy Matematicheskogo Instituta imeni V.A. Steklova\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trudy Matematicheskogo Instituta imeni V.A. Steklova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/tm4234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trudy Matematicheskogo Instituta imeni V.A. Steklova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/tm4234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
根据瑟斯顿分类,封闭的负曲率曲面的同伦同构类分为四个非交叉子集,T_1美元,T_2美元,T_3美元,T_4美元。每个子集中的同伦类由同构(典型的特尔斯顿形式)所定义,其特征分别为:周期同态,非周期同态,非周期同态,非同态,非同态,非同态代数有限。瑟斯顿的典型形式不是结构上稳定的衍生物。因此,在每个同伦类中,构建最简单(在某种意义上)的结构可持续性二态的任务自然就出现了。没有钱的人,格林斯用T_1美元在每个同族教室里建造了梯度和衍生物。a . j .脂肪和r . v . plukin宣布了一种方法,可以在每个同质类中以T_4美元的价格构建结构可持续的二态。这种衍生物的持续集合包括源线圈的有限数量和唯一的一维吸引力。本文描述了在每个同质类中,T_2美元的结构可持续二态形成。建造的代表是莫尔斯-斯迈耶分化,具有定向的异质临床交叉。
Реализация гомеоморфизмов поверхностей алгебраически конечного порядка диффеоморфизмами Морса-Смейла с ориентируемым гетероклиническим пересечением
Согласно классификации Тeрстона множество гомотопических классов гомеоморфизмов замкнутых ориентируемых поверхностей отрицательной кривизны разбивается на четыре непересекающихся подмножества $T_1$, $T_2$, $T_3$, $T_4$. Гомотопический класс из каждого подмножества характеризуется существованием в нем гомеоморфизма (канонической формы Тeрстона), имеющего в точности один из следующих типов соответственно: периодический гомеоморфизм, приводимый непериодический гомеоморфизм алгебраически конечного порядка, приводимый гомеоморфизм, не являющийся гомеоморфизмом алгебраически конечного порядка, псевдоаносовский гомеоморфизм. Канонические формы Тeрстона не являются структурно устойчивыми диффеоморфизмами. Поэтому естественно возникает задача построения простейших (в определенном смысле) структурно устойчивых диффеоморфизмов в каждом гомотопическом классе. А.Н. Безденежных и В.З. Гринес построили градиентно-подобный диффеоморфизм в каждом гомотопическом классе из $T_1$. А.Ю. Жиров и Р.В. Плыкин анонсировали метод построения структурно устойчивого диффеоморфизма в каждом гомотопическом классе из $T_4$. Неблуждающее множество этого диффеоморфизма состоит из конечного числа источниковых орбит и единственного одномерного аттрактора. В настоящей работе описано построение структурно устойчивого диффеоморфизма в каждом гомотопическом классе из $T_2$. Построенный представитель является диффеоморфизмом Морса-Смейла с ориентируемым гетероклиническим пересечением.