{"title":"PathDriver","authors":"Xing Huang, Youlin Pan, Grace Li Zhang, Bing Li, Wenzhong Guo, Tsung-Yi Ho, Ulf Schlichtmann","doi":"10.1145/3400302.3415725","DOIUrl":null,"url":null,"abstract":"Continuous-flow microfluidic biochips have attracted high research interest over the past years. Inside such a chip, fluid samples of milliliter volumes are efficiently transported between devices (e.g., mixers, etc.) to automatically perform various laboratory procedures in biology and biochemistry. Each transportation task, however, requires an exclusive flow path composed of multiple contiguous microchannels during its execution period. Excess/waste fluids, in the meantime, should be discarded by independent flow paths connected to waste ports. All these paths are etched in a very tiny chip area using multilayer soft lithography and driven by flow ports connecting with external pressure sources, forming a highly integrated chip architecture that dominates the performance of biochips. In this paper, we propose a practical synthesis flow called PathDriver for the design automation of microfluidic biochips, integrating the actual fluid manipulations into both high-level synthesis and physical design, which has never been considered in prior work. Given the protocols of biochemical applications, PathDriver aims to generate highly efficient chip architectures with a flow-path network that enables the manipulation of actual fluid transportation and removal. Additionally, fluid volume management between devices and flow-path minimization are realized for the first time, thus ensuring the correctness of assay outcomes while reducing the complexity of chip architectures. Experimental results on multiple benchmarks demonstrate the effectiveness of the proposed synthesis flow.","PeriodicalId":367868,"journal":{"name":"Proceedings of the 39th International Conference on Computer-Aided Design","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"PathDriver\",\"authors\":\"Xing Huang, Youlin Pan, Grace Li Zhang, Bing Li, Wenzhong Guo, Tsung-Yi Ho, Ulf Schlichtmann\",\"doi\":\"10.1145/3400302.3415725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous-flow microfluidic biochips have attracted high research interest over the past years. Inside such a chip, fluid samples of milliliter volumes are efficiently transported between devices (e.g., mixers, etc.) to automatically perform various laboratory procedures in biology and biochemistry. Each transportation task, however, requires an exclusive flow path composed of multiple contiguous microchannels during its execution period. Excess/waste fluids, in the meantime, should be discarded by independent flow paths connected to waste ports. All these paths are etched in a very tiny chip area using multilayer soft lithography and driven by flow ports connecting with external pressure sources, forming a highly integrated chip architecture that dominates the performance of biochips. In this paper, we propose a practical synthesis flow called PathDriver for the design automation of microfluidic biochips, integrating the actual fluid manipulations into both high-level synthesis and physical design, which has never been considered in prior work. Given the protocols of biochemical applications, PathDriver aims to generate highly efficient chip architectures with a flow-path network that enables the manipulation of actual fluid transportation and removal. Additionally, fluid volume management between devices and flow-path minimization are realized for the first time, thus ensuring the correctness of assay outcomes while reducing the complexity of chip architectures. Experimental results on multiple benchmarks demonstrate the effectiveness of the proposed synthesis flow.\",\"PeriodicalId\":367868,\"journal\":{\"name\":\"Proceedings of the 39th International Conference on Computer-Aided Design\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th International Conference on Computer-Aided Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3400302.3415725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3400302.3415725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continuous-flow microfluidic biochips have attracted high research interest over the past years. Inside such a chip, fluid samples of milliliter volumes are efficiently transported between devices (e.g., mixers, etc.) to automatically perform various laboratory procedures in biology and biochemistry. Each transportation task, however, requires an exclusive flow path composed of multiple contiguous microchannels during its execution period. Excess/waste fluids, in the meantime, should be discarded by independent flow paths connected to waste ports. All these paths are etched in a very tiny chip area using multilayer soft lithography and driven by flow ports connecting with external pressure sources, forming a highly integrated chip architecture that dominates the performance of biochips. In this paper, we propose a practical synthesis flow called PathDriver for the design automation of microfluidic biochips, integrating the actual fluid manipulations into both high-level synthesis and physical design, which has never been considered in prior work. Given the protocols of biochemical applications, PathDriver aims to generate highly efficient chip architectures with a flow-path network that enables the manipulation of actual fluid transportation and removal. Additionally, fluid volume management between devices and flow-path minimization are realized for the first time, thus ensuring the correctness of assay outcomes while reducing the complexity of chip architectures. Experimental results on multiple benchmarks demonstrate the effectiveness of the proposed synthesis flow.