分段仿射系统和多模型非线性系统的辨识

Chow Yin Lai, C. Xiang, Tong-heng Lee
{"title":"分段仿射系统和多模型非线性系统的辨识","authors":"Chow Yin Lai, C. Xiang, Tong-heng Lee","doi":"10.1109/ICCA.2010.5524281","DOIUrl":null,"url":null,"abstract":"In this paper, a procedure for the identification of piecewise affine ARX systems is proposed. The parameters of the individual subsystems are identified through a least-squares based identification method using multiple models. The partition of the regressor space is then determined using standard procedures such as neural network classifier or support vector machine classifier. The same procedure can be applied to identify nonlinear systems by approximating them via piecewise affine systems. Extensive simulation studies show that our algorithm can indeed provide accurate estimates of the plant parameters even in noisy cases, and even when the model orders are overestimated.","PeriodicalId":155562,"journal":{"name":"IEEE ICCA 2010","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identification of piecewise affine systems and nonlinear systems using multiple models\",\"authors\":\"Chow Yin Lai, C. Xiang, Tong-heng Lee\",\"doi\":\"10.1109/ICCA.2010.5524281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a procedure for the identification of piecewise affine ARX systems is proposed. The parameters of the individual subsystems are identified through a least-squares based identification method using multiple models. The partition of the regressor space is then determined using standard procedures such as neural network classifier or support vector machine classifier. The same procedure can be applied to identify nonlinear systems by approximating them via piecewise affine systems. Extensive simulation studies show that our algorithm can indeed provide accurate estimates of the plant parameters even in noisy cases, and even when the model orders are overestimated.\",\"PeriodicalId\":155562,\"journal\":{\"name\":\"IEEE ICCA 2010\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE ICCA 2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2010.5524281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ICCA 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2010.5524281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种分段仿射ARX系统的辨识方法。采用基于最小二乘的多模型辨识方法辨识各子系统的参数。然后使用标准程序(如神经网络分类器或支持向量机分类器)确定回归量空间的划分。同样的方法可以应用于通过分段仿射系统逼近非线性系统来识别非线性系统。大量的仿真研究表明,即使在有噪声的情况下,即使在模型阶数被高估的情况下,我们的算法也确实可以提供准确的植物参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of piecewise affine systems and nonlinear systems using multiple models
In this paper, a procedure for the identification of piecewise affine ARX systems is proposed. The parameters of the individual subsystems are identified through a least-squares based identification method using multiple models. The partition of the regressor space is then determined using standard procedures such as neural network classifier or support vector machine classifier. The same procedure can be applied to identify nonlinear systems by approximating them via piecewise affine systems. Extensive simulation studies show that our algorithm can indeed provide accurate estimates of the plant parameters even in noisy cases, and even when the model orders are overestimated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信