不同地震作用下钢格塔动力响应的数值研究

Tomasz Falborsk, N. Lasowicz
{"title":"不同地震作用下钢格塔动力响应的数值研究","authors":"Tomasz Falborsk, N. Lasowicz","doi":"10.3846/mbmst.2019.065","DOIUrl":null,"url":null,"abstract":"The present paper presents the results of the numerical study designed to investigate the soil-structure flexibility effects on modal parameters (i.e. fundamental frequencies) and time-history analysis response (represented by the top relative displacements) of a 46.8 m high steel lattice tower subjected to a number of ground motions including also one mining tremor. In addition to the fixed-base condition, three different soil types (i.e. dense soil, stiff soil, and soft soil) were considered in this investigation. Site conditions were characterized by their average effective profile velocities, Poisson’s ratios, and finally mass densities. Soil-foundation flexibility was introduced using the spring-based approach, utilizing foundation springs and dashpots. The first step was to investigate the influence of different base conditions on modal parameters of the steel lattice tower. In the final part of the current study time-history analysis was performed using different two-component ground motion records (in two horizontal, mutually perpendicular directions). The results obtained indicate that modal parameters and dynamic response of the structure may be considerably affected by the soil-structure interaction effects. Therefore, the present paper confirms the necessity of utilizing soil-flexibility into numerical research.","PeriodicalId":169478,"journal":{"name":"The proceedings of the 13th international conference \"Modern Building Materials, Structures and Techniques\" (MBMST 2019)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation on dynamic response of a steel lattice tower under various seismic events\",\"authors\":\"Tomasz Falborsk, N. Lasowicz\",\"doi\":\"10.3846/mbmst.2019.065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper presents the results of the numerical study designed to investigate the soil-structure flexibility effects on modal parameters (i.e. fundamental frequencies) and time-history analysis response (represented by the top relative displacements) of a 46.8 m high steel lattice tower subjected to a number of ground motions including also one mining tremor. In addition to the fixed-base condition, three different soil types (i.e. dense soil, stiff soil, and soft soil) were considered in this investigation. Site conditions were characterized by their average effective profile velocities, Poisson’s ratios, and finally mass densities. Soil-foundation flexibility was introduced using the spring-based approach, utilizing foundation springs and dashpots. The first step was to investigate the influence of different base conditions on modal parameters of the steel lattice tower. In the final part of the current study time-history analysis was performed using different two-component ground motion records (in two horizontal, mutually perpendicular directions). The results obtained indicate that modal parameters and dynamic response of the structure may be considerably affected by the soil-structure interaction effects. Therefore, the present paper confirms the necessity of utilizing soil-flexibility into numerical research.\",\"PeriodicalId\":169478,\"journal\":{\"name\":\"The proceedings of the 13th international conference \\\"Modern Building Materials, Structures and Techniques\\\" (MBMST 2019)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The proceedings of the 13th international conference \\\"Modern Building Materials, Structures and Techniques\\\" (MBMST 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/mbmst.2019.065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The proceedings of the 13th international conference \"Modern Building Materials, Structures and Techniques\" (MBMST 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/mbmst.2019.065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了数值研究的结果,旨在研究46.8 m高钢格塔在多次地震动(包括一次矿震)作用下,土-结构柔性对模态参数(即基频)和时程分析响应(由顶部相对位移表示)的影响。除了固定地基条件外,本研究还考虑了三种不同的土壤类型(即致密土、硬土和软土)。场地条件的特征是它们的平均有效剖面速度,泊松比,最后是质量密度。采用基于弹簧的方法,利用基础弹簧和阻尼器,介绍了地基的灵活性。第一步是研究不同基础条件对钢格塔模态参数的影响。在当前研究的最后一部分,使用不同的双分量地面运动记录(在两个水平,相互垂直的方向上)进行时程分析。结果表明,土-结构相互作用对结构的模态参数和动力响应有较大影响。因此,本文确认了在数值研究中利用土壤柔韧性的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical investigation on dynamic response of a steel lattice tower under various seismic events
The present paper presents the results of the numerical study designed to investigate the soil-structure flexibility effects on modal parameters (i.e. fundamental frequencies) and time-history analysis response (represented by the top relative displacements) of a 46.8 m high steel lattice tower subjected to a number of ground motions including also one mining tremor. In addition to the fixed-base condition, three different soil types (i.e. dense soil, stiff soil, and soft soil) were considered in this investigation. Site conditions were characterized by their average effective profile velocities, Poisson’s ratios, and finally mass densities. Soil-foundation flexibility was introduced using the spring-based approach, utilizing foundation springs and dashpots. The first step was to investigate the influence of different base conditions on modal parameters of the steel lattice tower. In the final part of the current study time-history analysis was performed using different two-component ground motion records (in two horizontal, mutually perpendicular directions). The results obtained indicate that modal parameters and dynamic response of the structure may be considerably affected by the soil-structure interaction effects. Therefore, the present paper confirms the necessity of utilizing soil-flexibility into numerical research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信