基于转发器收缩阵列的多层神经网络实现

Q. Song, E.K. Teoh, D.P. Mital
{"title":"基于转发器收缩阵列的多层神经网络实现","authors":"Q. Song,&nbsp;E.K. Teoh,&nbsp;D.P. Mital","doi":"10.1016/0165-6074(95)00010-L","DOIUrl":null,"url":null,"abstract":"<div><p>Performance analysis and comparison are carried out for the one- and two-dimensional systolic arrays based on transputers. Low efficiency has been found in the one-dimensional array because of communication overhead. The systolic algorithm is extended to the two-dimensional array to implement a full parallelism in each layer's calculation. This speeds up simulation of the network. Experiment results are provided to support the performance evaluation.</p></div>","PeriodicalId":100927,"journal":{"name":"Microprocessing and Microprogramming","volume":"41 4","pages":"Pages 289-299"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0165-6074(95)00010-L","citationCount":"2","resultStr":"{\"title\":\"Multilayered neural network implementation on transputer systolic array\",\"authors\":\"Q. Song,&nbsp;E.K. Teoh,&nbsp;D.P. Mital\",\"doi\":\"10.1016/0165-6074(95)00010-L\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Performance analysis and comparison are carried out for the one- and two-dimensional systolic arrays based on transputers. Low efficiency has been found in the one-dimensional array because of communication overhead. The systolic algorithm is extended to the two-dimensional array to implement a full parallelism in each layer's calculation. This speeds up simulation of the network. Experiment results are provided to support the performance evaluation.</p></div>\",\"PeriodicalId\":100927,\"journal\":{\"name\":\"Microprocessing and Microprogramming\",\"volume\":\"41 4\",\"pages\":\"Pages 289-299\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0165-6074(95)00010-L\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microprocessing and Microprogramming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/016560749500010L\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessing and Microprogramming","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/016560749500010L","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对基于转发器的一维和二维收缩阵列进行了性能分析和比较。由于通信开销的影响,一维阵列的效率很低。将收缩算法扩展到二维数组中,实现了每层计算的完全并行化。这加快了网络模拟的速度。实验结果为性能评价提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilayered neural network implementation on transputer systolic array

Performance analysis and comparison are carried out for the one- and two-dimensional systolic arrays based on transputers. Low efficiency has been found in the one-dimensional array because of communication overhead. The systolic algorithm is extended to the two-dimensional array to implement a full parallelism in each layer's calculation. This speeds up simulation of the network. Experiment results are provided to support the performance evaluation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信