{"title":"用SSVEP-BCI来指挥机器人轮椅","authors":"S. Muller, T. Bastos-Filho, M. Sarcinelli-Filho","doi":"10.1109/ISIE.2011.5984288","DOIUrl":null,"url":null,"abstract":"This work presents a Brain-Computer Interface (BCI) based on the Steady-State Visual Evoked Potential (SSVEP) that can discriminate four classes once per second. A statistical test is used to extract the evoked response and a decision tree is used to discriminate the stimulus frequency. Designed according such approach, volunteers were capable to online operate a BCI with hit rates varying from 60% to 100%. Moreover, one of the volunteers could guide a robotic wheelchair through an indoor environment using such BCI. As an additional feature, such BCI incorporates a visual feedback, which is essential for improving the performance of the whole system. All of this aspects allow to use this BCI to command a robotic wheelchair efficiently.","PeriodicalId":162453,"journal":{"name":"2011 IEEE International Symposium on Industrial Electronics","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Using a SSVEP-BCI to command a robotic wheelchair\",\"authors\":\"S. Muller, T. Bastos-Filho, M. Sarcinelli-Filho\",\"doi\":\"10.1109/ISIE.2011.5984288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a Brain-Computer Interface (BCI) based on the Steady-State Visual Evoked Potential (SSVEP) that can discriminate four classes once per second. A statistical test is used to extract the evoked response and a decision tree is used to discriminate the stimulus frequency. Designed according such approach, volunteers were capable to online operate a BCI with hit rates varying from 60% to 100%. Moreover, one of the volunteers could guide a robotic wheelchair through an indoor environment using such BCI. As an additional feature, such BCI incorporates a visual feedback, which is essential for improving the performance of the whole system. All of this aspects allow to use this BCI to command a robotic wheelchair efficiently.\",\"PeriodicalId\":162453,\"journal\":{\"name\":\"2011 IEEE International Symposium on Industrial Electronics\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Industrial Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2011.5984288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2011.5984288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This work presents a Brain-Computer Interface (BCI) based on the Steady-State Visual Evoked Potential (SSVEP) that can discriminate four classes once per second. A statistical test is used to extract the evoked response and a decision tree is used to discriminate the stimulus frequency. Designed according such approach, volunteers were capable to online operate a BCI with hit rates varying from 60% to 100%. Moreover, one of the volunteers could guide a robotic wheelchair through an indoor environment using such BCI. As an additional feature, such BCI incorporates a visual feedback, which is essential for improving the performance of the whole system. All of this aspects allow to use this BCI to command a robotic wheelchair efficiently.