当结果是二元的时候,衡量机会不平等的尺度与平移

ERN: Equity Pub Date : 2015-03-16 DOI:10.2139/ssrn.2226822
Florian Chávez-Juárez, I. Soloaga
{"title":"当结果是二元的时候,衡量机会不平等的尺度与平移","authors":"Florian Chávez-Juárez, I. Soloaga","doi":"10.2139/ssrn.2226822","DOIUrl":null,"url":null,"abstract":"This paper discusses the measurement of ex-ante inequality of opportunity when the outcome is binary. We argue that the use of scale but not translation invariant inequality measures such as the dissimilarity index are problematic, since they rely too much on the average level of access. We propose rst a decomposition of these measures in a level and a dispersion eect and second an adapted index satisfying translation invariance. In two short illustrations we show that the conclusions dier substantially between the two methods and","PeriodicalId":282303,"journal":{"name":"ERN: Equity","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Scale vs. Translation Invariant Measures of Inequality of Opportunity When the Outcome is Binary\",\"authors\":\"Florian Chávez-Juárez, I. Soloaga\",\"doi\":\"10.2139/ssrn.2226822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the measurement of ex-ante inequality of opportunity when the outcome is binary. We argue that the use of scale but not translation invariant inequality measures such as the dissimilarity index are problematic, since they rely too much on the average level of access. We propose rst a decomposition of these measures in a level and a dispersion eect and second an adapted index satisfying translation invariance. In two short illustrations we show that the conclusions dier substantially between the two methods and\",\"PeriodicalId\":282303,\"journal\":{\"name\":\"ERN: Equity\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Equity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2226822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Equity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2226822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文讨论了结果为二元时机会事前不平等的度量问题。我们认为,使用规模而不是平移不变的不平等度量,如不相似性指数,是有问题的,因为它们过于依赖于平均访问水平。我们首先在一个水平和一个离散效应中对这些度量进行分解,然后提出一个满足平移不变性的自适应指标。在两个简短的例子中,我们表明结论在两种方法和
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scale vs. Translation Invariant Measures of Inequality of Opportunity When the Outcome is Binary
This paper discusses the measurement of ex-ante inequality of opportunity when the outcome is binary. We argue that the use of scale but not translation invariant inequality measures such as the dissimilarity index are problematic, since they rely too much on the average level of access. We propose rst a decomposition of these measures in a level and a dispersion eect and second an adapted index satisfying translation invariance. In two short illustrations we show that the conclusions dier substantially between the two methods and
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信