{"title":"肖特基势垒纳米管场效应管的紧凑模型","authors":"L. C. Castro, D. L. John, D. Pulfrey","doi":"10.1109/COMMAD.2002.1237251","DOIUrl":null,"url":null,"abstract":"Issues pertinent to the development of a compact model for predicting the drain current-voltage characteristics of coaxial-geometry, Schottky-barrier, carbon-nanotube field-effect transistors are discussed. Information on the non-equilibrium barrier shapes at the source-tube and drain-tube contacts is inferred from exact 2-D solutions to Poisson's equation at equilibrium and Laplace's equation. This information is then used in a non-equilibrium flux approach to create a model that accounts for tunneling through both barriers and computes the drain current in the case of ballistic transport. For (16,0) tubes and a gate/tube-radius ratio of 10, saturation drain currents of about 1 /spl mu/m are predicted.","PeriodicalId":129668,"journal":{"name":"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Towards a compact model for Schottky-barrier nanotube FETs\",\"authors\":\"L. C. Castro, D. L. John, D. Pulfrey\",\"doi\":\"10.1109/COMMAD.2002.1237251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Issues pertinent to the development of a compact model for predicting the drain current-voltage characteristics of coaxial-geometry, Schottky-barrier, carbon-nanotube field-effect transistors are discussed. Information on the non-equilibrium barrier shapes at the source-tube and drain-tube contacts is inferred from exact 2-D solutions to Poisson's equation at equilibrium and Laplace's equation. This information is then used in a non-equilibrium flux approach to create a model that accounts for tunneling through both barriers and computes the drain current in the case of ballistic transport. For (16,0) tubes and a gate/tube-radius ratio of 10, saturation drain currents of about 1 /spl mu/m are predicted.\",\"PeriodicalId\":129668,\"journal\":{\"name\":\"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMMAD.2002.1237251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMAD.2002.1237251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards a compact model for Schottky-barrier nanotube FETs
Issues pertinent to the development of a compact model for predicting the drain current-voltage characteristics of coaxial-geometry, Schottky-barrier, carbon-nanotube field-effect transistors are discussed. Information on the non-equilibrium barrier shapes at the source-tube and drain-tube contacts is inferred from exact 2-D solutions to Poisson's equation at equilibrium and Laplace's equation. This information is then used in a non-equilibrium flux approach to create a model that accounts for tunneling through both barriers and computes the drain current in the case of ballistic transport. For (16,0) tubes and a gate/tube-radius ratio of 10, saturation drain currents of about 1 /spl mu/m are predicted.