基于零方差的蒙特卡罗地下散射采样方案

Jaroslav Křivánek, Eugene d'Eon
{"title":"基于零方差的蒙特卡罗地下散射采样方案","authors":"Jaroslav Křivánek, Eugene d'Eon","doi":"10.1145/2614106.2614138","DOIUrl":null,"url":null,"abstract":"We simulate subsurface scattering using a Monte Carlo random walk in the volumetric medium under the surface. The simulation involves two steps: transition distance sampling and direction sampling. Traditionally, the pdfs used for this purpose emulate the underlying physical processes (exponential law for distance sampling pd(s) = σt e−sσt , phase function pph(ωo|ωi) for direction sampling). However, this sampling is purely local as it has no information about where the important parts of the entire domain are. In subsurface scattering simulation it is not useful to explore the medium far from the boundary, given that we are interested in paths that make it back out of the medium. This idea can be formalized using the notion of the importance function: A zero-variance estimator can be constructed by sampling paths proportionately to the product of the importance function and the classical pdfs [Hoogenboom 2008], and an approximation of this zerovariance ideal yields estimators with low variance. Dwivedi [1982] exploited this idea in deep-penetration transport problems such as reactor shielding. We show how this work can be adapted to reduce variance of subsurface scattering simulation.","PeriodicalId":118349,"journal":{"name":"ACM SIGGRAPH 2014 Talks","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A zero-variance-based sampling scheme for Monte Carlo subsurface scattering\",\"authors\":\"Jaroslav Křivánek, Eugene d'Eon\",\"doi\":\"10.1145/2614106.2614138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We simulate subsurface scattering using a Monte Carlo random walk in the volumetric medium under the surface. The simulation involves two steps: transition distance sampling and direction sampling. Traditionally, the pdfs used for this purpose emulate the underlying physical processes (exponential law for distance sampling pd(s) = σt e−sσt , phase function pph(ωo|ωi) for direction sampling). However, this sampling is purely local as it has no information about where the important parts of the entire domain are. In subsurface scattering simulation it is not useful to explore the medium far from the boundary, given that we are interested in paths that make it back out of the medium. This idea can be formalized using the notion of the importance function: A zero-variance estimator can be constructed by sampling paths proportionately to the product of the importance function and the classical pdfs [Hoogenboom 2008], and an approximation of this zerovariance ideal yields estimators with low variance. Dwivedi [1982] exploited this idea in deep-penetration transport problems such as reactor shielding. We show how this work can be adapted to reduce variance of subsurface scattering simulation.\",\"PeriodicalId\":118349,\"journal\":{\"name\":\"ACM SIGGRAPH 2014 Talks\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2014 Talks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2614106.2614138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2014 Talks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2614106.2614138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

我们用蒙特卡罗随机漫步法模拟了表面下体积介质中的亚表面散射。仿真包括两个步骤:过渡距离采样和方向采样。传统上,用于此目的的pdf模拟底层物理过程(距离采样的指数律pd(s) = σt e−sσt,方向采样的相函数pph(ωo|ωi))。然而,这种采样纯粹是局部的,因为它没有关于整个域的重要部分在哪里的信息。在地下散射模拟中,考虑到我们感兴趣的是使其从介质中返回的路径,探索远离边界的介质是没有用的。这个想法可以用重要性函数的概念形式化:一个零方差估计量可以通过与重要性函数和经典pdf的乘积成比例的采样路径来构造[Hoogenboom 2008],并且这个零方差理想的近似值产生低方差的估计量。Dwivedi[1982]在反应堆屏蔽等深穿透传输问题中利用了这一思想。我们展示了这项工作如何适用于减少地下散射模拟的方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A zero-variance-based sampling scheme for Monte Carlo subsurface scattering
We simulate subsurface scattering using a Monte Carlo random walk in the volumetric medium under the surface. The simulation involves two steps: transition distance sampling and direction sampling. Traditionally, the pdfs used for this purpose emulate the underlying physical processes (exponential law for distance sampling pd(s) = σt e−sσt , phase function pph(ωo|ωi) for direction sampling). However, this sampling is purely local as it has no information about where the important parts of the entire domain are. In subsurface scattering simulation it is not useful to explore the medium far from the boundary, given that we are interested in paths that make it back out of the medium. This idea can be formalized using the notion of the importance function: A zero-variance estimator can be constructed by sampling paths proportionately to the product of the importance function and the classical pdfs [Hoogenboom 2008], and an approximation of this zerovariance ideal yields estimators with low variance. Dwivedi [1982] exploited this idea in deep-penetration transport problems such as reactor shielding. We show how this work can be adapted to reduce variance of subsurface scattering simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信