基于全息多智能体系统的自主机器人协同q学习路径规划

C. Lamini, Y. Fathi, Said Benhlima
{"title":"基于全息多智能体系统的自主机器人协同q学习路径规划","authors":"C. Lamini, Y. Fathi, Said Benhlima","doi":"10.1109/SITA.2015.7358432","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel collaborative Q-learning based path planning system using holonic multi agent system architecture, to use in autonomous mobile robot represented as a head-holon, for planing the optimal path between any starting point and a goal in a grid environment. The mobile robot has to explore the 2D grid randomly in order to update a local state action space Q-table relaying on a standalone decision. A global (Master) Q-table is then update based on collaborative policy between head holons, in which every holon has a preset confidence degree used as a decisive parameter in the Q-learning equation.","PeriodicalId":174405,"journal":{"name":"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Collaborative Q-learning path planning for autonomous robots based on holonic multi-agent system\",\"authors\":\"C. Lamini, Y. Fathi, Said Benhlima\",\"doi\":\"10.1109/SITA.2015.7358432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a novel collaborative Q-learning based path planning system using holonic multi agent system architecture, to use in autonomous mobile robot represented as a head-holon, for planing the optimal path between any starting point and a goal in a grid environment. The mobile robot has to explore the 2D grid randomly in order to update a local state action space Q-table relaying on a standalone decision. A global (Master) Q-table is then update based on collaborative policy between head holons, in which every holon has a preset confidence degree used as a decisive parameter in the Q-learning equation.\",\"PeriodicalId\":174405,\"journal\":{\"name\":\"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITA.2015.7358432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITA.2015.7358432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们提出了一种新的基于协同q学习的路径规划系统,该系统采用全息多智能体系统架构,用于表示为头部全息的自主移动机器人,用于规划网格环境中任何起点和目标之间的最优路径。移动机器人必须随机探索二维网格,以便根据独立决策更新局部状态动作空间q表。然后基于头部全息之间的协作策略更新全局(主)q表,其中每个全息都有一个预设的置信度,作为q学习方程的决定性参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative Q-learning path planning for autonomous robots based on holonic multi-agent system
In this paper we present a novel collaborative Q-learning based path planning system using holonic multi agent system architecture, to use in autonomous mobile robot represented as a head-holon, for planing the optimal path between any starting point and a goal in a grid environment. The mobile robot has to explore the 2D grid randomly in order to update a local state action space Q-table relaying on a standalone decision. A global (Master) Q-table is then update based on collaborative policy between head holons, in which every holon has a preset confidence degree used as a decisive parameter in the Q-learning equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信