系统分析程序中界面输运方程的界面面积加权平均气速模型

Mengsi Shen, Meng Lin
{"title":"系统分析程序中界面输运方程的界面面积加权平均气速模型","authors":"Mengsi Shen, Meng Lin","doi":"10.1115/icone28-64196","DOIUrl":null,"url":null,"abstract":"\n The interfacial area transport equation is a more accurate and stable way to compute the interfacial area concentration than the traditional empirical correlation in the two-phase two-fluid model. And among the parameters in the two-group interfacial area transport equation, the interfacial area concentration weighted area-averaged gas velocity is an important parameter to close the two-group area-averaged interfacial area transport equation in the system analysis code. However, there has been no theory model to compute the interfacial area concentration weighted area-averaged gas velocity until now. So this study established the theory model for two-group interfacial area concentration weighted area-averaged gas velocity based on the drift-flux model for the two-phase dispersed bubble flow. The experimental data were selected from the published literature, which include the detailed two-phase interfacial structure experimental data for the slug bubble flow. The interfacial area concentration weighted area-averaged gas velocity model predicted the selected experimental data well, which validated the developed model. Moreover, the difference between the interfacial area concentration weighted area-averaged gas velocity and the void weighted area-averaged gas velocity is clarified quantitatively for the first time. The theory model developed in this study can be improved and then be used to compute the interfacial area weighted area-averaged gas velocity because it includes the empirical parameter of conventional drift-flux model.","PeriodicalId":108609,"journal":{"name":"Volume 4: Student Paper Competition","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Interfacial Area Weighted Area-Averaged Gas Velocity Model for the Interfacial Area Transport Equation in the System Analysis Code\",\"authors\":\"Mengsi Shen, Meng Lin\",\"doi\":\"10.1115/icone28-64196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The interfacial area transport equation is a more accurate and stable way to compute the interfacial area concentration than the traditional empirical correlation in the two-phase two-fluid model. And among the parameters in the two-group interfacial area transport equation, the interfacial area concentration weighted area-averaged gas velocity is an important parameter to close the two-group area-averaged interfacial area transport equation in the system analysis code. However, there has been no theory model to compute the interfacial area concentration weighted area-averaged gas velocity until now. So this study established the theory model for two-group interfacial area concentration weighted area-averaged gas velocity based on the drift-flux model for the two-phase dispersed bubble flow. The experimental data were selected from the published literature, which include the detailed two-phase interfacial structure experimental data for the slug bubble flow. The interfacial area concentration weighted area-averaged gas velocity model predicted the selected experimental data well, which validated the developed model. Moreover, the difference between the interfacial area concentration weighted area-averaged gas velocity and the void weighted area-averaged gas velocity is clarified quantitatively for the first time. The theory model developed in this study can be improved and then be used to compute the interfacial area weighted area-averaged gas velocity because it includes the empirical parameter of conventional drift-flux model.\",\"PeriodicalId\":108609,\"journal\":{\"name\":\"Volume 4: Student Paper Competition\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 4: Student Paper Competition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone28-64196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone28-64196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在两相两流体模型中,界面面积输运方程是一种比传统经验关联法更准确、更稳定的计算界面面积浓度的方法。在两组界面面积输运方程的参数中,界面浓度加权平均气速是系统分析代码中关闭两组界面面积输运方程的重要参数。然而,目前还没有计算界面浓度加权面积平均气速的理论模型。因此,本研究在两相分散气泡流漂移通量模型的基础上建立了两族界面面积浓度加权面积平均气速的理论模型。实验数据选自已发表的文献,其中包括段塞流泡流动的详细两相界面结构实验数据。界面浓度加权面积平均气速模型较好地预测了所选实验数据,验证了所建模型的有效性。首次定量地阐明了界面浓度加权面积平均气速与空隙加权面积平均气速之间的差异。本文所建立的理论模型包含了传统漂通量模型的经验参数,可用于计算界面面积加权面积平均气速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Interfacial Area Weighted Area-Averaged Gas Velocity Model for the Interfacial Area Transport Equation in the System Analysis Code
The interfacial area transport equation is a more accurate and stable way to compute the interfacial area concentration than the traditional empirical correlation in the two-phase two-fluid model. And among the parameters in the two-group interfacial area transport equation, the interfacial area concentration weighted area-averaged gas velocity is an important parameter to close the two-group area-averaged interfacial area transport equation in the system analysis code. However, there has been no theory model to compute the interfacial area concentration weighted area-averaged gas velocity until now. So this study established the theory model for two-group interfacial area concentration weighted area-averaged gas velocity based on the drift-flux model for the two-phase dispersed bubble flow. The experimental data were selected from the published literature, which include the detailed two-phase interfacial structure experimental data for the slug bubble flow. The interfacial area concentration weighted area-averaged gas velocity model predicted the selected experimental data well, which validated the developed model. Moreover, the difference between the interfacial area concentration weighted area-averaged gas velocity and the void weighted area-averaged gas velocity is clarified quantitatively for the first time. The theory model developed in this study can be improved and then be used to compute the interfacial area weighted area-averaged gas velocity because it includes the empirical parameter of conventional drift-flux model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信