一种新型仿生翼展变形翼概念的初步分析

Benjamin J. Stacey, Peter Thomas
{"title":"一种新型仿生翼展变形翼概念的初步分析","authors":"Benjamin J. Stacey, Peter Thomas","doi":"10.1115/smasis2019-5567","DOIUrl":null,"url":null,"abstract":"\n Morphing wings and the adaptive systems they form have been developed significantly over recent decades. Increased efficiency and control performance can be achieved with their implementation, while advances in material technology, system integration and control, have allowed concepts to present a realistic alternative to fixed-wing and aft-tail aircraft. Set out in this paper is the preliminary design and development for a novel span-wise morphing concept which employs and heavily implements biomimetic design. Specifically, the skeletal structure of the bird wing by mimicking the humerus, ulna/radius, and carpometacarpus of birds of prey as they exhibit the most versatile wing shape enabling multiple manoeuvre and flight types. The concept comprises three sections corresponding to the skeletal structure, each consisting of a leading edge D-spar and an internal structural member onto which trailing edge plates are mounted. Pneumatic artificial muscle (PAM) actuators are presented as a drive for a biologically derived ‘drawing-parallels’ mechanism, through which a 75% semi-span length change and variable sweep angle, can be obtained. Analysis of initial CFD results is discussed in comparison with similar concepts in the field and a proposal for small scale wind tunnel verification put forward. While a rapid prototype is printed to confirm the viability of the concept.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Initial Analysis of a Novel Biomimetic Span-Wise Morphing Wing Concept\",\"authors\":\"Benjamin J. Stacey, Peter Thomas\",\"doi\":\"10.1115/smasis2019-5567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Morphing wings and the adaptive systems they form have been developed significantly over recent decades. Increased efficiency and control performance can be achieved with their implementation, while advances in material technology, system integration and control, have allowed concepts to present a realistic alternative to fixed-wing and aft-tail aircraft. Set out in this paper is the preliminary design and development for a novel span-wise morphing concept which employs and heavily implements biomimetic design. Specifically, the skeletal structure of the bird wing by mimicking the humerus, ulna/radius, and carpometacarpus of birds of prey as they exhibit the most versatile wing shape enabling multiple manoeuvre and flight types. The concept comprises three sections corresponding to the skeletal structure, each consisting of a leading edge D-spar and an internal structural member onto which trailing edge plates are mounted. Pneumatic artificial muscle (PAM) actuators are presented as a drive for a biologically derived ‘drawing-parallels’ mechanism, through which a 75% semi-span length change and variable sweep angle, can be obtained. Analysis of initial CFD results is discussed in comparison with similar concepts in the field and a proposal for small scale wind tunnel verification put forward. While a rapid prototype is printed to confirm the viability of the concept.\",\"PeriodicalId\":235262,\"journal\":{\"name\":\"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/smasis2019-5567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/smasis2019-5567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,变形翅膀及其形成的适应系统得到了显著发展。在材料技术、系统集成和控制方面的进步,使其成为固定翼和后尾翼飞机的现实替代品。本文提出了一种采用并大量实施仿生设计的新型跨型变形概念的初步设计和开发。具体来说,鸟类翅膀的骨骼结构模仿了猛禽的肱骨、尺骨/桡骨和腕骨,因为它们表现出最通用的翅膀形状,能够进行多种机动和飞行类型。该概念包括与骨架结构相对应的三个部分,每个部分由前缘d梁和内部结构构件组成,后缘板安装在其上。气动人造肌肉(PAM)执行器是一种生物衍生的“绘制平行线”机制的驱动器,通过它可以获得75%的半跨长度变化和可变扫描角。对初始CFD结果进行了分析,并与现场类似概念进行了比较,提出了进行小规模风洞验证的建议。同时打印一个快速原型来确认这个概念的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Initial Analysis of a Novel Biomimetic Span-Wise Morphing Wing Concept
Morphing wings and the adaptive systems they form have been developed significantly over recent decades. Increased efficiency and control performance can be achieved with their implementation, while advances in material technology, system integration and control, have allowed concepts to present a realistic alternative to fixed-wing and aft-tail aircraft. Set out in this paper is the preliminary design and development for a novel span-wise morphing concept which employs and heavily implements biomimetic design. Specifically, the skeletal structure of the bird wing by mimicking the humerus, ulna/radius, and carpometacarpus of birds of prey as they exhibit the most versatile wing shape enabling multiple manoeuvre and flight types. The concept comprises three sections corresponding to the skeletal structure, each consisting of a leading edge D-spar and an internal structural member onto which trailing edge plates are mounted. Pneumatic artificial muscle (PAM) actuators are presented as a drive for a biologically derived ‘drawing-parallels’ mechanism, through which a 75% semi-span length change and variable sweep angle, can be obtained. Analysis of initial CFD results is discussed in comparison with similar concepts in the field and a proposal for small scale wind tunnel verification put forward. While a rapid prototype is printed to confirm the viability of the concept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信