{"title":"基于低级控制系统的非完整轮式移动机器人轨迹跟踪控制方案设计","authors":"C. B. Low","doi":"10.1109/CDC.2012.6426748","DOIUrl":null,"url":null,"abstract":"Motivated by formation control of multiple non-holonomic mobile robots, this paper presents a trajectory tracking control scheme design for nonholonomic mobile robots that are equipped with low-level linear and angular velocities control systems. The design includes a nonlinear kinematic trajectory tracking control law and a tracking control gains selection method that provide a means to implement the nonlinear tracking control law systematically based on the dynamic control performance of the robot's low-level control systems. In addition, the proposed scheme, by design, enables the mobile robot to execute reference trajectories that are represented by time-parameterized waypoints. This feature provides the scheme a generic interface with higher-level trajectory planners. The trajectory tracking control scheme is validated using an iRobot Packbot's parameteric model estimated from experimental data.","PeriodicalId":312426,"journal":{"name":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A trajectory tracking control scheme design for nonholonomic wheeled mobile robots with low-level control systems\",\"authors\":\"C. B. Low\",\"doi\":\"10.1109/CDC.2012.6426748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by formation control of multiple non-holonomic mobile robots, this paper presents a trajectory tracking control scheme design for nonholonomic mobile robots that are equipped with low-level linear and angular velocities control systems. The design includes a nonlinear kinematic trajectory tracking control law and a tracking control gains selection method that provide a means to implement the nonlinear tracking control law systematically based on the dynamic control performance of the robot's low-level control systems. In addition, the proposed scheme, by design, enables the mobile robot to execute reference trajectories that are represented by time-parameterized waypoints. This feature provides the scheme a generic interface with higher-level trajectory planners. The trajectory tracking control scheme is validated using an iRobot Packbot's parameteric model estimated from experimental data.\",\"PeriodicalId\":312426,\"journal\":{\"name\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2012.6426748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2012.6426748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A trajectory tracking control scheme design for nonholonomic wheeled mobile robots with low-level control systems
Motivated by formation control of multiple non-holonomic mobile robots, this paper presents a trajectory tracking control scheme design for nonholonomic mobile robots that are equipped with low-level linear and angular velocities control systems. The design includes a nonlinear kinematic trajectory tracking control law and a tracking control gains selection method that provide a means to implement the nonlinear tracking control law systematically based on the dynamic control performance of the robot's low-level control systems. In addition, the proposed scheme, by design, enables the mobile robot to execute reference trajectories that are represented by time-parameterized waypoints. This feature provides the scheme a generic interface with higher-level trajectory planners. The trajectory tracking control scheme is validated using an iRobot Packbot's parameteric model estimated from experimental data.