{"title":"基于脑电图信号模式识别的假肢控制系统","authors":"Zhang Zhen, Fan Hong-liang","doi":"10.1109/FBIE.2008.22","DOIUrl":null,"url":null,"abstract":"This study introduced the producing theory and producing region of electroencephalogram (EEG) signal as well as containing physiological information and analyzed the purpose, method and procedure of EEG signal pattern recognition, as well as the latest development and related medical theory of EEG signal acquisition. The procedure of EEG signal pattern recognition consisted of information acquisition, preprocessing, feature extraction and selection, classification estimation and recognition. By studying the association between EEG signal and prosthetic movement, it was concluded that EEG signal controlling prosthesis was feasible. Therefore, a prosthetic controlled system was designed based on EEG signal pattern recognition and acquisition. The system initiated from scalp electrode (or prosthetic electrode), passed through differential amplifier circuit (or prosthetic drive circuit), pre-amplifier circuit, notch circuit, med-amplifier circuit, and filter circuit, and finally reached analog-to-digital converter. The practice proves that this prosthetic controlled system can satisfy various requirements of EEG signal-controlled prosthesis pretty well.","PeriodicalId":415908,"journal":{"name":"2008 International Seminar on Future BioMedical Information Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Prosthetic Controlled System Based on Signal Pattern Recognition of Electroencephalogram\",\"authors\":\"Zhang Zhen, Fan Hong-liang\",\"doi\":\"10.1109/FBIE.2008.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduced the producing theory and producing region of electroencephalogram (EEG) signal as well as containing physiological information and analyzed the purpose, method and procedure of EEG signal pattern recognition, as well as the latest development and related medical theory of EEG signal acquisition. The procedure of EEG signal pattern recognition consisted of information acquisition, preprocessing, feature extraction and selection, classification estimation and recognition. By studying the association between EEG signal and prosthetic movement, it was concluded that EEG signal controlling prosthesis was feasible. Therefore, a prosthetic controlled system was designed based on EEG signal pattern recognition and acquisition. The system initiated from scalp electrode (or prosthetic electrode), passed through differential amplifier circuit (or prosthetic drive circuit), pre-amplifier circuit, notch circuit, med-amplifier circuit, and filter circuit, and finally reached analog-to-digital converter. The practice proves that this prosthetic controlled system can satisfy various requirements of EEG signal-controlled prosthesis pretty well.\",\"PeriodicalId\":415908,\"journal\":{\"name\":\"2008 International Seminar on Future BioMedical Information Engineering\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Seminar on Future BioMedical Information Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FBIE.2008.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Seminar on Future BioMedical Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FBIE.2008.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prosthetic Controlled System Based on Signal Pattern Recognition of Electroencephalogram
This study introduced the producing theory and producing region of electroencephalogram (EEG) signal as well as containing physiological information and analyzed the purpose, method and procedure of EEG signal pattern recognition, as well as the latest development and related medical theory of EEG signal acquisition. The procedure of EEG signal pattern recognition consisted of information acquisition, preprocessing, feature extraction and selection, classification estimation and recognition. By studying the association between EEG signal and prosthetic movement, it was concluded that EEG signal controlling prosthesis was feasible. Therefore, a prosthetic controlled system was designed based on EEG signal pattern recognition and acquisition. The system initiated from scalp electrode (or prosthetic electrode), passed through differential amplifier circuit (or prosthetic drive circuit), pre-amplifier circuit, notch circuit, med-amplifier circuit, and filter circuit, and finally reached analog-to-digital converter. The practice proves that this prosthetic controlled system can satisfy various requirements of EEG signal-controlled prosthesis pretty well.