{"title":"浅水中宽带声矢量场的空频分布","authors":"Qunyan Ren, J. Hermand, S. Piao","doi":"10.1109/OCEANS.2010.5664109","DOIUrl":null,"url":null,"abstract":"An uniform distribution often appears in the space-frequency plane for broad-band, low-frequency sound intensity generated by a moving source in a shallow water environment. Waveguide invariant theory is used to interpret this phenomenon, and it has been applied for inverse problems in underwater acoustics. A vector sensor has advantages in providing both pressure and particle velocity information about the sound field simultaneously, and a higher signal-to-noise ratio signal than a traditional hydrophone. In the present paper, the space-frequency distribution of broad-band vector acoustic signals in a Pekeris waveguide is investigated using normal mode theory. A comparison between experimental and predicted space-frequency distributions is made for the Yellow Shark environment. The effects of the sound speed profile of the water column, the existence of a soft sediment layer, the change of sound speed or thickness of the soft sediment on the space-frequency distribution are examined. The possibility of using space-frequency distributions to invert for environmental parameters is discussed.","PeriodicalId":363534,"journal":{"name":"OCEANS 2010 MTS/IEEE SEATTLE","volume":"23 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Space-frequency distribution of the vector field of broad-band sound in shallow water\",\"authors\":\"Qunyan Ren, J. Hermand, S. Piao\",\"doi\":\"10.1109/OCEANS.2010.5664109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An uniform distribution often appears in the space-frequency plane for broad-band, low-frequency sound intensity generated by a moving source in a shallow water environment. Waveguide invariant theory is used to interpret this phenomenon, and it has been applied for inverse problems in underwater acoustics. A vector sensor has advantages in providing both pressure and particle velocity information about the sound field simultaneously, and a higher signal-to-noise ratio signal than a traditional hydrophone. In the present paper, the space-frequency distribution of broad-band vector acoustic signals in a Pekeris waveguide is investigated using normal mode theory. A comparison between experimental and predicted space-frequency distributions is made for the Yellow Shark environment. The effects of the sound speed profile of the water column, the existence of a soft sediment layer, the change of sound speed or thickness of the soft sediment on the space-frequency distribution are examined. The possibility of using space-frequency distributions to invert for environmental parameters is discussed.\",\"PeriodicalId\":363534,\"journal\":{\"name\":\"OCEANS 2010 MTS/IEEE SEATTLE\",\"volume\":\"23 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2010 MTS/IEEE SEATTLE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2010.5664109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2010 MTS/IEEE SEATTLE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2010.5664109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Space-frequency distribution of the vector field of broad-band sound in shallow water
An uniform distribution often appears in the space-frequency plane for broad-band, low-frequency sound intensity generated by a moving source in a shallow water environment. Waveguide invariant theory is used to interpret this phenomenon, and it has been applied for inverse problems in underwater acoustics. A vector sensor has advantages in providing both pressure and particle velocity information about the sound field simultaneously, and a higher signal-to-noise ratio signal than a traditional hydrophone. In the present paper, the space-frequency distribution of broad-band vector acoustic signals in a Pekeris waveguide is investigated using normal mode theory. A comparison between experimental and predicted space-frequency distributions is made for the Yellow Shark environment. The effects of the sound speed profile of the water column, the existence of a soft sediment layer, the change of sound speed or thickness of the soft sediment on the space-frequency distribution are examined. The possibility of using space-frequency distributions to invert for environmental parameters is discussed.