一种分离fMRI噪声分量的迭代ICA方法

Wanjun Huang, I. Panahi, R. Briggs
{"title":"一种分离fMRI噪声分量的迭代ICA方法","authors":"Wanjun Huang, I. Panahi, R. Briggs","doi":"10.1109/EMBSW.2007.4454158","DOIUrl":null,"url":null,"abstract":"A new iterative algorithm for separating mixtures of multi-channel signals is proposed. This algorithm extends the instantaneous independent component analysis algorithm to multi-channel blind source separation algorithm. Separation is processed by decomposing convolutive mixtures to instantaneous mixtures. Simulation results for real fMRI (functional magnetic resonance imaging) scanner noise show that the proposed algorithm is very effective in blind source separation.","PeriodicalId":333843,"journal":{"name":"2007 IEEE Dallas Engineering in Medicine and Biology Workshop","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Iterative ICA Method for Separating fMRI Acoustic Noise Components\",\"authors\":\"Wanjun Huang, I. Panahi, R. Briggs\",\"doi\":\"10.1109/EMBSW.2007.4454158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new iterative algorithm for separating mixtures of multi-channel signals is proposed. This algorithm extends the instantaneous independent component analysis algorithm to multi-channel blind source separation algorithm. Separation is processed by decomposing convolutive mixtures to instantaneous mixtures. Simulation results for real fMRI (functional magnetic resonance imaging) scanner noise show that the proposed algorithm is very effective in blind source separation.\",\"PeriodicalId\":333843,\"journal\":{\"name\":\"2007 IEEE Dallas Engineering in Medicine and Biology Workshop\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Dallas Engineering in Medicine and Biology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBSW.2007.4454158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Dallas Engineering in Medicine and Biology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBSW.2007.4454158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的多通道混合信号分离迭代算法。该算法将瞬时独立分量分析算法扩展到多通道盲信源分离算法。分离是通过将卷积混合物分解为瞬时混合物来处理的。对真实功能磁共振成像(fMRI)扫描仪噪声的仿真结果表明,该算法在盲源分离方面是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Iterative ICA Method for Separating fMRI Acoustic Noise Components
A new iterative algorithm for separating mixtures of multi-channel signals is proposed. This algorithm extends the instantaneous independent component analysis algorithm to multi-channel blind source separation algorithm. Separation is processed by decomposing convolutive mixtures to instantaneous mixtures. Simulation results for real fMRI (functional magnetic resonance imaging) scanner noise show that the proposed algorithm is very effective in blind source separation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信