广义RBF网络的实现

Nung Kion Lee, Dianhui Wang
{"title":"广义RBF网络的实现","authors":"Nung Kion Lee, Dianhui Wang","doi":"10.33736/JITA.400.2005","DOIUrl":null,"url":null,"abstract":"Neural classifiers have been widely used in many application areas. This paper describes generalized neural classifier based on the radial basis function network. The contributions of this work are: i) improvement on the standard radial basis function network architecture, ii) proposed a new cost function for classification, \niii) hidden units feature subset selection algorithm, and iv) optimizing the neural classifier using the genetic algorithm with a new cost function. Comparative studies on the proposed neural classifier on protein classification problem are given.","PeriodicalId":265725,"journal":{"name":"International Conference on Information Technology in Asia","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Realization of Generalized RBF Network\",\"authors\":\"Nung Kion Lee, Dianhui Wang\",\"doi\":\"10.33736/JITA.400.2005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural classifiers have been widely used in many application areas. This paper describes generalized neural classifier based on the radial basis function network. The contributions of this work are: i) improvement on the standard radial basis function network architecture, ii) proposed a new cost function for classification, \\niii) hidden units feature subset selection algorithm, and iv) optimizing the neural classifier using the genetic algorithm with a new cost function. Comparative studies on the proposed neural classifier on protein classification problem are given.\",\"PeriodicalId\":265725,\"journal\":{\"name\":\"International Conference on Information Technology in Asia\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Technology in Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33736/JITA.400.2005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Technology in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33736/JITA.400.2005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

神经分类器在许多应用领域得到了广泛的应用。本文描述了一种基于径向基函数网络的广义神经分类器。本文的贡献有:1)改进了标准的径向基函数网络结构;2)提出了一种新的分类代价函数;3)隐藏单元特征子集选择算法;4)利用新的代价函数利用遗传算法对神经分类器进行优化。对所提出的神经分类器在蛋白质分类问题上进行了比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realization of Generalized RBF Network
Neural classifiers have been widely used in many application areas. This paper describes generalized neural classifier based on the radial basis function network. The contributions of this work are: i) improvement on the standard radial basis function network architecture, ii) proposed a new cost function for classification, iii) hidden units feature subset selection algorithm, and iv) optimizing the neural classifier using the genetic algorithm with a new cost function. Comparative studies on the proposed neural classifier on protein classification problem are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信