从不确定性解码的角度阐述REMOS概念

R. Maas, Walter Kellermann, A. Sehr, Takuya Yoshioka, Marc Delcroix, K. Kinoshita, T. Nakatani
{"title":"从不确定性解码的角度阐述REMOS概念","authors":"R. Maas, Walter Kellermann, A. Sehr, Takuya Yoshioka, Marc Delcroix, K. Kinoshita, T. Nakatani","doi":"10.1109/ICDSP.2013.6622698","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new formulation of the REMOS (REverberation MOdeling for Speech recognition) concept from an uncertainty decoding perspective. Based on a convolutive observation model that relaxes the conditional independence assumption of hidden Markov models, REMOS effectively adapts automatic speech recognition (ASR) systems to noisy and strongly reverberant environments. While uncertainty decoding approaches are typically designed to operate irrespectively of the employed decoding routine of the ASR system, REMOS explicitly considers the additional information provided by the Viterbi decoder. In contrast to previous publications of the REMOS concept, we provide a conclusive derivation of its decoding routine using a Bayesian network representation in order to prove its inherent uncertainty decoding character.","PeriodicalId":180360,"journal":{"name":"2013 18th International Conference on Digital Signal Processing (DSP)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Formulation of the REMOS concept from an uncertainty decoding perspective\",\"authors\":\"R. Maas, Walter Kellermann, A. Sehr, Takuya Yoshioka, Marc Delcroix, K. Kinoshita, T. Nakatani\",\"doi\":\"10.1109/ICDSP.2013.6622698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new formulation of the REMOS (REverberation MOdeling for Speech recognition) concept from an uncertainty decoding perspective. Based on a convolutive observation model that relaxes the conditional independence assumption of hidden Markov models, REMOS effectively adapts automatic speech recognition (ASR) systems to noisy and strongly reverberant environments. While uncertainty decoding approaches are typically designed to operate irrespectively of the employed decoding routine of the ASR system, REMOS explicitly considers the additional information provided by the Viterbi decoder. In contrast to previous publications of the REMOS concept, we provide a conclusive derivation of its decoding routine using a Bayesian network representation in order to prove its inherent uncertainty decoding character.\",\"PeriodicalId\":180360,\"journal\":{\"name\":\"2013 18th International Conference on Digital Signal Processing (DSP)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 18th International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2013.6622698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2013.6622698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文从不确定性解码的角度介绍了语音识别混响建模(remations MOdeling for Speech recognition)概念的一种新表述。基于卷积观测模型,放宽了隐马尔可夫模型的条件独立性假设,REMOS有效地使自动语音识别(ASR)系统适应噪声和强混响环境。虽然不确定性解码方法通常被设计为与ASR系统所采用的解码程序无关,但REMOS明确考虑了Viterbi解码器提供的附加信息。与之前发表的REMOS概念相反,我们使用贝叶斯网络表示提供了其解码程序的确凿推导,以证明其固有的不确定性解码特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formulation of the REMOS concept from an uncertainty decoding perspective
In this paper, we introduce a new formulation of the REMOS (REverberation MOdeling for Speech recognition) concept from an uncertainty decoding perspective. Based on a convolutive observation model that relaxes the conditional independence assumption of hidden Markov models, REMOS effectively adapts automatic speech recognition (ASR) systems to noisy and strongly reverberant environments. While uncertainty decoding approaches are typically designed to operate irrespectively of the employed decoding routine of the ASR system, REMOS explicitly considers the additional information provided by the Viterbi decoder. In contrast to previous publications of the REMOS concept, we provide a conclusive derivation of its decoding routine using a Bayesian network representation in order to prove its inherent uncertainty decoding character.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信