基于仿真步长和重构误差权衡的截断BPTT训练尖峰自编码器

Yohei Shimmyo, Y. Okuyama, Abderazek Ben Abdallah
{"title":"基于仿真步长和重构误差权衡的截断BPTT训练尖峰自编码器","authors":"Yohei Shimmyo, Y. Okuyama, Abderazek Ben Abdallah","doi":"10.1109/ICDL53763.2022.9962236","DOIUrl":null,"url":null,"abstract":"This article presents a comprehensive study of trade-offs between simulation steps and reconstruction performance for spiking autoencoders. We execute training and inference of a spiking neural network to reconstruct FashionMNSIT dataset images for several simulation step configurations and evaluate reconstruction accuracies by mean squared error. Experiments showed that a longer simulation step configuration indeed improves reconstruction accuracy while the improvement gets a peek at a very long configuration. Flexible design on the training configuration will be applicable; for example, shorter steps could be acceptable for accurate-insensitive but latency-restricted systems.","PeriodicalId":274171,"journal":{"name":"2022 IEEE International Conference on Development and Learning (ICDL)","volume":"35 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Training Spiking Autoencoders by Truncated BPTT under Trade-offs between Simulation Steps and Reconstruction Error\",\"authors\":\"Yohei Shimmyo, Y. Okuyama, Abderazek Ben Abdallah\",\"doi\":\"10.1109/ICDL53763.2022.9962236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a comprehensive study of trade-offs between simulation steps and reconstruction performance for spiking autoencoders. We execute training and inference of a spiking neural network to reconstruct FashionMNSIT dataset images for several simulation step configurations and evaluate reconstruction accuracies by mean squared error. Experiments showed that a longer simulation step configuration indeed improves reconstruction accuracy while the improvement gets a peek at a very long configuration. Flexible design on the training configuration will be applicable; for example, shorter steps could be acceptable for accurate-insensitive but latency-restricted systems.\",\"PeriodicalId\":274171,\"journal\":{\"name\":\"2022 IEEE International Conference on Development and Learning (ICDL)\",\"volume\":\"35 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Development and Learning (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDL53763.2022.9962236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Development and Learning (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL53763.2022.9962236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个全面的研究之间的权衡模拟步骤和重建性能的尖峰自编码器。我们对一个峰值神经网络进行训练和推理,重建了几种模拟步骤配置的FashionMNSIT数据集图像,并通过均方误差评估了重建精度。实验表明,较长的仿真步长构型确实提高了重构精度,而在较长的仿真步长构型下,重构精度得到了提高。培训配置的灵活设计将适用;例如,对于精度不敏感但延迟受限的系统,更短的步骤是可以接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training Spiking Autoencoders by Truncated BPTT under Trade-offs between Simulation Steps and Reconstruction Error
This article presents a comprehensive study of trade-offs between simulation steps and reconstruction performance for spiking autoencoders. We execute training and inference of a spiking neural network to reconstruct FashionMNSIT dataset images for several simulation step configurations and evaluate reconstruction accuracies by mean squared error. Experiments showed that a longer simulation step configuration indeed improves reconstruction accuracy while the improvement gets a peek at a very long configuration. Flexible design on the training configuration will be applicable; for example, shorter steps could be acceptable for accurate-insensitive but latency-restricted systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信