地理图像检索与分类的特征编码模型

Savas Özkan, Tayfun Ates, Engin Tola, M. Soysal, E. Esen
{"title":"地理图像检索与分类的特征编码模型","authors":"Savas Özkan, Tayfun Ates, Engin Tola, M. Soysal, E. Esen","doi":"10.1109/SIU.2014.6830171","DOIUrl":null,"url":null,"abstract":"In this work, we survey the performance of various feature encoding models for geographic image retrieval task. Recently introduced Vector-of-Locally-Aggregated Descriptors (VLAD) and its Product Quantization encoded binary version VLAD-PQ are compared with the widely used Bag-of-Word (BoW) model. Evaluation results are shown on a publicly available 21-class LULC dataset. With experiments, it is shown that VLAD outperforms classical BoW representation albeit with some increases in the computation time. Additionally, VLAD-PQ results in similar retrieval performance with VLAD but requiring no more computational or memory resources are observed.","PeriodicalId":384835,"journal":{"name":"2014 22nd Signal Processing and Communications Applications Conference (SIU)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature encoding models for geographic image retrieval and categorization\",\"authors\":\"Savas Özkan, Tayfun Ates, Engin Tola, M. Soysal, E. Esen\",\"doi\":\"10.1109/SIU.2014.6830171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we survey the performance of various feature encoding models for geographic image retrieval task. Recently introduced Vector-of-Locally-Aggregated Descriptors (VLAD) and its Product Quantization encoded binary version VLAD-PQ are compared with the widely used Bag-of-Word (BoW) model. Evaluation results are shown on a publicly available 21-class LULC dataset. With experiments, it is shown that VLAD outperforms classical BoW representation albeit with some increases in the computation time. Additionally, VLAD-PQ results in similar retrieval performance with VLAD but requiring no more computational or memory resources are observed.\",\"PeriodicalId\":384835,\"journal\":{\"name\":\"2014 22nd Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2014.6830171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2014.6830171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了各种特征编码模型在地理图像检索任务中的性能。将新近引入的局部聚合向量描述符(vector -of- local - aggregated Descriptors, VLAD)及其积量化编码二进制版本VLAD- pq与广泛使用的词袋模型(Bag-of-Word, BoW)进行了比较。评估结果显示在一个公开的21类LULC数据集上。实验表明,尽管计算时间有所增加,但VLAD的性能优于传统的BoW表示。此外,VLAD- pq的检索性能与VLAD相似,但不需要更多的计算或内存资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature encoding models for geographic image retrieval and categorization
In this work, we survey the performance of various feature encoding models for geographic image retrieval task. Recently introduced Vector-of-Locally-Aggregated Descriptors (VLAD) and its Product Quantization encoded binary version VLAD-PQ are compared with the widely used Bag-of-Word (BoW) model. Evaluation results are shown on a publicly available 21-class LULC dataset. With experiments, it is shown that VLAD outperforms classical BoW representation albeit with some increases in the computation time. Additionally, VLAD-PQ results in similar retrieval performance with VLAD but requiring no more computational or memory resources are observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信