基于GMM的偏振分数分类统计模型

Ayush Chauhan, H. Maurya, R. K. Panigrahi
{"title":"基于GMM的偏振分数分类统计模型","authors":"Ayush Chauhan, H. Maurya, R. K. Panigrahi","doi":"10.1109/APMC.2016.7931377","DOIUrl":null,"url":null,"abstract":"This paper presents a statistical model to classify the PolSAR image on the basis of Polarization Fraction (PF) of the backscattered wave. The basic principle behind PF, i.e., the relative power in the co-polarized and cross-polarized channel, is employed to distinguish between surface, double-bounce and volume scattering. We look to find the best fit model to the measured data by assuming it to be Gaussian distributed. A Radarsat-2 image of San Francisco is used to illustrate the results.","PeriodicalId":166478,"journal":{"name":"2016 Asia-Pacific Microwave Conference (APMC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical modelling of Polarization Fraction for classification of PolSAR images using GMM\",\"authors\":\"Ayush Chauhan, H. Maurya, R. K. Panigrahi\",\"doi\":\"10.1109/APMC.2016.7931377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a statistical model to classify the PolSAR image on the basis of Polarization Fraction (PF) of the backscattered wave. The basic principle behind PF, i.e., the relative power in the co-polarized and cross-polarized channel, is employed to distinguish between surface, double-bounce and volume scattering. We look to find the best fit model to the measured data by assuming it to be Gaussian distributed. A Radarsat-2 image of San Francisco is used to illustrate the results.\",\"PeriodicalId\":166478,\"journal\":{\"name\":\"2016 Asia-Pacific Microwave Conference (APMC)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Asia-Pacific Microwave Conference (APMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APMC.2016.7931377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific Microwave Conference (APMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APMC.2016.7931377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于后向散射波偏振分数(PF)的偏振sar图像分类统计模型。PF背后的基本原理,即共极化和交叉极化通道中的相对功率,被用来区分表面、双反弹和体积散射。我们希望通过假设测量数据是高斯分布来找到最适合的模型。使用了旧金山的Radarsat-2图像来说明结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical modelling of Polarization Fraction for classification of PolSAR images using GMM
This paper presents a statistical model to classify the PolSAR image on the basis of Polarization Fraction (PF) of the backscattered wave. The basic principle behind PF, i.e., the relative power in the co-polarized and cross-polarized channel, is employed to distinguish between surface, double-bounce and volume scattering. We look to find the best fit model to the measured data by assuming it to be Gaussian distributed. A Radarsat-2 image of San Francisco is used to illustrate the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信