S. Fomins, M. Reinfelde, A. Larichev, N. Iroshnikov, A. Gerbreders, M. Ozolinsh
{"title":"用于眼像差校正的光致ass薄膜相板自适应光学反射镜","authors":"S. Fomins, M. Reinfelde, A. Larichev, N. Iroshnikov, A. Gerbreders, M. Ozolinsh","doi":"10.1117/12.815948","DOIUrl":null,"url":null,"abstract":"Amorphous chalcogenide thin films are excellent materials for holographic recordings. AsSeS thin film coating is a useful optical material for it's thickness to be easily corrected with the use of exposure to light and consecutive chemical etching. Following properties allow to treat the surface of AsSeS chalcogenide films and to use them in adaptive optics systems for correction of the optical wavefront. Hereby, we characterize AsSeS film properties to be used for correction of optical aberrations of the human eye. The thickness of the film is characterized with the method of spectrodensitometry and the surface profile depth with a Hartman- Shack waveform analyzator.","PeriodicalId":273853,"journal":{"name":"International Conference on Advanced Optical Materials and Devices","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Photoinduced AsSeS thin film phase plates as adaptive optics mirrors for eye aberration correction\",\"authors\":\"S. Fomins, M. Reinfelde, A. Larichev, N. Iroshnikov, A. Gerbreders, M. Ozolinsh\",\"doi\":\"10.1117/12.815948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amorphous chalcogenide thin films are excellent materials for holographic recordings. AsSeS thin film coating is a useful optical material for it's thickness to be easily corrected with the use of exposure to light and consecutive chemical etching. Following properties allow to treat the surface of AsSeS chalcogenide films and to use them in adaptive optics systems for correction of the optical wavefront. Hereby, we characterize AsSeS film properties to be used for correction of optical aberrations of the human eye. The thickness of the film is characterized with the method of spectrodensitometry and the surface profile depth with a Hartman- Shack waveform analyzator.\",\"PeriodicalId\":273853,\"journal\":{\"name\":\"International Conference on Advanced Optical Materials and Devices\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advanced Optical Materials and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.815948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advanced Optical Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.815948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photoinduced AsSeS thin film phase plates as adaptive optics mirrors for eye aberration correction
Amorphous chalcogenide thin films are excellent materials for holographic recordings. AsSeS thin film coating is a useful optical material for it's thickness to be easily corrected with the use of exposure to light and consecutive chemical etching. Following properties allow to treat the surface of AsSeS chalcogenide films and to use them in adaptive optics systems for correction of the optical wavefront. Hereby, we characterize AsSeS film properties to be used for correction of optical aberrations of the human eye. The thickness of the film is characterized with the method of spectrodensitometry and the surface profile depth with a Hartman- Shack waveform analyzator.