用集成方法预测二元分类问题的量子版本

K. Khadiev, L. Safina
{"title":"用集成方法预测二元分类问题的量子版本","authors":"K. Khadiev, L. Safina","doi":"10.1117/12.2624427","DOIUrl":null,"url":null,"abstract":"In this work, we consider the performance of using a quantum algorithm to predict the result of a binary classification problem when a machine learning model is an ensemble of any simple classifiers. This approach is faster than classical prediction and uses quantum and classical computing, but it is based on a probabilistic algorithm. Let N be the number of classifiers from an ensemble model and O(T) be the running time of prediction of one classifier. In classical case, the final result is obtained by ”averaging” outcomes of all ensemble model’s classifiers. The running time in classical case is O (N · T). We propose an algorithm that works in O (√N · T ).","PeriodicalId":388511,"journal":{"name":"International Conference on Micro- and Nano-Electronics","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The quantum version of prediction for binary classification problem by ensemble methods\",\"authors\":\"K. Khadiev, L. Safina\",\"doi\":\"10.1117/12.2624427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider the performance of using a quantum algorithm to predict the result of a binary classification problem when a machine learning model is an ensemble of any simple classifiers. This approach is faster than classical prediction and uses quantum and classical computing, but it is based on a probabilistic algorithm. Let N be the number of classifiers from an ensemble model and O(T) be the running time of prediction of one classifier. In classical case, the final result is obtained by ”averaging” outcomes of all ensemble model’s classifiers. The running time in classical case is O (N · T). We propose an algorithm that works in O (√N · T ).\",\"PeriodicalId\":388511,\"journal\":{\"name\":\"International Conference on Micro- and Nano-Electronics\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Micro- and Nano-Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2624427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Micro- and Nano-Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2624427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项工作中,我们考虑了当机器学习模型是任何简单分类器的集合时,使用量子算法预测二元分类问题结果的性能。这种方法比经典预测更快,并使用量子和经典计算,但它是基于概率算法的。设N为集成模型中分类器的个数,O(T)为一个分类器预测的运行时间。在经典情况下,最终结果是通过“平均”所有集成模型分类器的结果得到的。经典情况下的运行时间为O (N·T),本文提出了一种运行时间为O(√N·T)的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The quantum version of prediction for binary classification problem by ensemble methods
In this work, we consider the performance of using a quantum algorithm to predict the result of a binary classification problem when a machine learning model is an ensemble of any simple classifiers. This approach is faster than classical prediction and uses quantum and classical computing, but it is based on a probabilistic algorithm. Let N be the number of classifiers from an ensemble model and O(T) be the running time of prediction of one classifier. In classical case, the final result is obtained by ”averaging” outcomes of all ensemble model’s classifiers. The running time in classical case is O (N · T). We propose an algorithm that works in O (√N · T ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信