{"title":"VCO抖动仿真及其与测量值的比较","authors":"Masayuki Takahashi, Kimihiro Ogawa, K. Kundert","doi":"10.1109/ASPDAC.1999.759717","DOIUrl":null,"url":null,"abstract":"We have simulated the phase noise of a voltage controlled oscillator (VCO) using an RF circuit simulator, SpectreRF/sup TM/. This simulator uses a variation of the periodic noise analysis first proposed by Okumura, et al (1993). It computes the power spectral density of the noise as a function of frequency. By assuming that only white noise sources are present in the oscillator, it is possible to derive a simple relationship between the level of the phase noise and the jitter. This excludes flicker noise from consideration, however, since flicker noise is a low-frequency phenomenon, excluding it only affects the accuracy of the long-term jitter. We compared the jitter with measurement and found the error to be less than 2 dB. An AHDL model for the VCO that efficiently exhibits jitter in the time domain is included. The model was written in Verilog-A. This model can be used to determine the affect of VCO jitter on a larger system, such as a phase-locked loop (PLL).","PeriodicalId":201352,"journal":{"name":"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"VCO jitter simulation and its comparison with measurement\",\"authors\":\"Masayuki Takahashi, Kimihiro Ogawa, K. Kundert\",\"doi\":\"10.1109/ASPDAC.1999.759717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have simulated the phase noise of a voltage controlled oscillator (VCO) using an RF circuit simulator, SpectreRF/sup TM/. This simulator uses a variation of the periodic noise analysis first proposed by Okumura, et al (1993). It computes the power spectral density of the noise as a function of frequency. By assuming that only white noise sources are present in the oscillator, it is possible to derive a simple relationship between the level of the phase noise and the jitter. This excludes flicker noise from consideration, however, since flicker noise is a low-frequency phenomenon, excluding it only affects the accuracy of the long-term jitter. We compared the jitter with measurement and found the error to be less than 2 dB. An AHDL model for the VCO that efficiently exhibits jitter in the time domain is included. The model was written in Verilog-A. This model can be used to determine the affect of VCO jitter on a larger system, such as a phase-locked loop (PLL).\",\"PeriodicalId\":201352,\"journal\":{\"name\":\"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.1999.759717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASP-DAC '99 Asia and South Pacific Design Automation Conference 1999 (Cat. No.99EX198)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.1999.759717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VCO jitter simulation and its comparison with measurement
We have simulated the phase noise of a voltage controlled oscillator (VCO) using an RF circuit simulator, SpectreRF/sup TM/. This simulator uses a variation of the periodic noise analysis first proposed by Okumura, et al (1993). It computes the power spectral density of the noise as a function of frequency. By assuming that only white noise sources are present in the oscillator, it is possible to derive a simple relationship between the level of the phase noise and the jitter. This excludes flicker noise from consideration, however, since flicker noise is a low-frequency phenomenon, excluding it only affects the accuracy of the long-term jitter. We compared the jitter with measurement and found the error to be less than 2 dB. An AHDL model for the VCO that efficiently exhibits jitter in the time domain is included. The model was written in Verilog-A. This model can be used to determine the affect of VCO jitter on a larger system, such as a phase-locked loop (PLL).