一种用于天文学的高效率日冕仪

C. Ftaclas, E. Siebert, R. Terrile
{"title":"一种用于天文学的高效率日冕仪","authors":"C. Ftaclas, E. Siebert, R. Terrile","doi":"10.1364/soa.1988.wa5","DOIUrl":null,"url":null,"abstract":"Direct detection of extra-solar planetary systems is one of a class of astronomical problems requiring a significant reduction of diffracted light within a few arcseconds of a bright point source. Traditional approaches to diffraction reduction control have included pupil plane apodization, which extracts enormous penalties in effective collecting area to obtain small angle performance, and coronagraphs, in which high efficiency requires extensive occultation of the central source giving up a valuable portion of the field of view. We have developed a hybrid, high efficiency, coronagraph which is optimized for diffraction reduction within a few Airy radii of a bright unresolved source. The coronagraph utilizes a graded, or apodized transmission mask to occult the central source. Theoretical models have shown that the mask renders the Lyot stop more efficient while allowing some transmission very close to the parent star. For targets near the parent star we have found that the coronagraphic efficiency remains virtually independent of radius even when transmission losses through the mask are taken into account. Instead of being used to reduce the wings of a focal plane diffraction pattern, apodization is used in this design to reduce the diffraction wings of the pupil plane image. With a more compact pupil plane image, the application of a Lyot stop becomes much more efficient resulting in greatly improved performance without the loss of a valuable portion of the field of view. Theoretical results will be presented as well as data from a breadboard experiment.","PeriodicalId":184695,"journal":{"name":"Space Optics for Astrophysics and Earth and Planetary Remote Sensing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A High Efficiency Coronagraph for Astronomical Applications\",\"authors\":\"C. Ftaclas, E. Siebert, R. Terrile\",\"doi\":\"10.1364/soa.1988.wa5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct detection of extra-solar planetary systems is one of a class of astronomical problems requiring a significant reduction of diffracted light within a few arcseconds of a bright point source. Traditional approaches to diffraction reduction control have included pupil plane apodization, which extracts enormous penalties in effective collecting area to obtain small angle performance, and coronagraphs, in which high efficiency requires extensive occultation of the central source giving up a valuable portion of the field of view. We have developed a hybrid, high efficiency, coronagraph which is optimized for diffraction reduction within a few Airy radii of a bright unresolved source. The coronagraph utilizes a graded, or apodized transmission mask to occult the central source. Theoretical models have shown that the mask renders the Lyot stop more efficient while allowing some transmission very close to the parent star. For targets near the parent star we have found that the coronagraphic efficiency remains virtually independent of radius even when transmission losses through the mask are taken into account. Instead of being used to reduce the wings of a focal plane diffraction pattern, apodization is used in this design to reduce the diffraction wings of the pupil plane image. With a more compact pupil plane image, the application of a Lyot stop becomes much more efficient resulting in greatly improved performance without the loss of a valuable portion of the field of view. Theoretical results will be presented as well as data from a breadboard experiment.\",\"PeriodicalId\":184695,\"journal\":{\"name\":\"Space Optics for Astrophysics and Earth and Planetary Remote Sensing\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Optics for Astrophysics and Earth and Planetary Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/soa.1988.wa5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Optics for Astrophysics and Earth and Planetary Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/soa.1988.wa5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对太阳系外行星系统的直接探测是一类天文学问题之一,需要在距离亮点光源几弧秒的范围内显著减少衍射光。传统的衍射减少控制方法包括瞳孔平面apodization,它在有效收集区域中提取巨大的惩罚以获得小角度性能,以及日冕仪,其中高效率需要对中心光源进行广泛的掩星,从而放弃宝贵的视场部分。我们已经开发了一种混合的,高效率的日冕仪,它被优化为在明亮的未解析源的几个艾里半径内减少衍射。日冕仪采用渐变或消光传输掩膜来隐藏中心光源。理论模型表明,掩膜使Lyot停止更有效,同时允许一些非常接近母星的传输。对于靠近母星的目标,我们发现即使考虑到通过掩膜的传输损失,日冕效率实际上仍然与半径无关。而不是用来减少焦平面衍射图案的翅膀,apodiization是在本设计中使用,以减少衍射翅膀的瞳孔平面图像。随着更紧凑的瞳孔平面图像,Lyot光圈的应用变得更加有效,从而大大提高了性能,而不会损失有价值的部分视野。将给出理论结果以及面包板实验的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A High Efficiency Coronagraph for Astronomical Applications
Direct detection of extra-solar planetary systems is one of a class of astronomical problems requiring a significant reduction of diffracted light within a few arcseconds of a bright point source. Traditional approaches to diffraction reduction control have included pupil plane apodization, which extracts enormous penalties in effective collecting area to obtain small angle performance, and coronagraphs, in which high efficiency requires extensive occultation of the central source giving up a valuable portion of the field of view. We have developed a hybrid, high efficiency, coronagraph which is optimized for diffraction reduction within a few Airy radii of a bright unresolved source. The coronagraph utilizes a graded, or apodized transmission mask to occult the central source. Theoretical models have shown that the mask renders the Lyot stop more efficient while allowing some transmission very close to the parent star. For targets near the parent star we have found that the coronagraphic efficiency remains virtually independent of radius even when transmission losses through the mask are taken into account. Instead of being used to reduce the wings of a focal plane diffraction pattern, apodization is used in this design to reduce the diffraction wings of the pupil plane image. With a more compact pupil plane image, the application of a Lyot stop becomes much more efficient resulting in greatly improved performance without the loss of a valuable portion of the field of view. Theoretical results will be presented as well as data from a breadboard experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信