户外定位框架与电信数据

Yige Zhang
{"title":"户外定位框架与电信数据","authors":"Yige Zhang","doi":"10.1109/MDM.2019.00-14","DOIUrl":null,"url":null,"abstract":"When Telecommunication (Telco) networks provide phone call and data services for mobile devices, measurement records (MRs) are generated to report connection states, e.g., signal strength, between mobile devices and nearby base stations. Telco outdoor localization is a technique to localize the mobile devices by using MR data. Unfortunately, city-scale Telco localization suffers from low localization accuracy, high cost of collecting sufficient MR samples, and noisy MR data. To tackle these issues, in this forum paper, we propose a machine learning-based Telco localization framework, consisting of three main components (localization models, the techniques to solve the data scarcity issue and to repair noisy data) and future directions.","PeriodicalId":241426,"journal":{"name":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Outdoor Localization Framework with Telco Data\",\"authors\":\"Yige Zhang\",\"doi\":\"10.1109/MDM.2019.00-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When Telecommunication (Telco) networks provide phone call and data services for mobile devices, measurement records (MRs) are generated to report connection states, e.g., signal strength, between mobile devices and nearby base stations. Telco outdoor localization is a technique to localize the mobile devices by using MR data. Unfortunately, city-scale Telco localization suffers from low localization accuracy, high cost of collecting sufficient MR samples, and noisy MR data. To tackle these issues, in this forum paper, we propose a machine learning-based Telco localization framework, consisting of three main components (localization models, the techniques to solve the data scarcity issue and to repair noisy data) and future directions.\",\"PeriodicalId\":241426,\"journal\":{\"name\":\"2019 20th IEEE International Conference on Mobile Data Management (MDM)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th IEEE International Conference on Mobile Data Management (MDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDM.2019.00-14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2019.00-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当电信(Telco)网络为移动设备提供电话呼叫和数据服务时,会生成测量记录(MRs)来报告移动设备与附近基站之间的连接状态,例如信号强度。电信户外定位是一种利用MR数据对移动设备进行定位的技术。遗憾的是,城市规模的电信定位存在定位精度低、采集足够MR样本成本高、MR数据噪声大等问题。为了解决这些问题,在这篇论坛论文中,我们提出了一个基于机器学习的电信定位框架,该框架由三个主要组成部分(定位模型、解决数据稀缺问题的技术和修复噪声数据的技术)和未来方向组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outdoor Localization Framework with Telco Data
When Telecommunication (Telco) networks provide phone call and data services for mobile devices, measurement records (MRs) are generated to report connection states, e.g., signal strength, between mobile devices and nearby base stations. Telco outdoor localization is a technique to localize the mobile devices by using MR data. Unfortunately, city-scale Telco localization suffers from low localization accuracy, high cost of collecting sufficient MR samples, and noisy MR data. To tackle these issues, in this forum paper, we propose a machine learning-based Telco localization framework, consisting of three main components (localization models, the techniques to solve the data scarcity issue and to repair noisy data) and future directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信