Y. Nguyen, M. Miroir, Guillaume Kazmitcheff, E. Ferrary, O. Sterkers, A. B. Grayeli
{"title":"超顺磁性纳米颗粒通过螺线管通过微导管输送","authors":"Y. Nguyen, M. Miroir, Guillaume Kazmitcheff, E. Ferrary, O. Sterkers, A. B. Grayeli","doi":"10.1109/NANOMED.2010.5749824","DOIUrl":null,"url":null,"abstract":"In order to design a drug delivery system to the human cochlea, a magnetic pump driving Fe3O4 super paramagnetic nanoparticles (MNP) attachable to a drug was evaluated. Such a device could be inserted into the cochlea by a minimally invasive technique. In this study, the effect of a magnetic field generated by solenoids coiled around a 1 mm diameter catheter filled with 200 nm MNP was studied. Results showed that, particles can be concentrated at different locations of the catheter for a precise delivery at different cochlear locations. The particles could also be driven between 2 solenoids 50 mm apart with 150 mA which is compatible with current sources in available cochlear implants.","PeriodicalId":446237,"journal":{"name":"2010 IEEE International Conference on Nano/Molecular Medicine and Engineering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Super paramagnetic nanoparticles delivery through a microcatheter by solenoids\",\"authors\":\"Y. Nguyen, M. Miroir, Guillaume Kazmitcheff, E. Ferrary, O. Sterkers, A. B. Grayeli\",\"doi\":\"10.1109/NANOMED.2010.5749824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to design a drug delivery system to the human cochlea, a magnetic pump driving Fe3O4 super paramagnetic nanoparticles (MNP) attachable to a drug was evaluated. Such a device could be inserted into the cochlea by a minimally invasive technique. In this study, the effect of a magnetic field generated by solenoids coiled around a 1 mm diameter catheter filled with 200 nm MNP was studied. Results showed that, particles can be concentrated at different locations of the catheter for a precise delivery at different cochlear locations. The particles could also be driven between 2 solenoids 50 mm apart with 150 mA which is compatible with current sources in available cochlear implants.\",\"PeriodicalId\":446237,\"journal\":{\"name\":\"2010 IEEE International Conference on Nano/Molecular Medicine and Engineering\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Nano/Molecular Medicine and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANOMED.2010.5749824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Nano/Molecular Medicine and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOMED.2010.5749824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Super paramagnetic nanoparticles delivery through a microcatheter by solenoids
In order to design a drug delivery system to the human cochlea, a magnetic pump driving Fe3O4 super paramagnetic nanoparticles (MNP) attachable to a drug was evaluated. Such a device could be inserted into the cochlea by a minimally invasive technique. In this study, the effect of a magnetic field generated by solenoids coiled around a 1 mm diameter catheter filled with 200 nm MNP was studied. Results showed that, particles can be concentrated at different locations of the catheter for a precise delivery at different cochlear locations. The particles could also be driven between 2 solenoids 50 mm apart with 150 mA which is compatible with current sources in available cochlear implants.