M. Herbordt, Josh Model, Y. Gu, Bharat Sukhwani, T. Court
{"title":"fpga上的单通、类blast、近似字符串匹配","authors":"M. Herbordt, Josh Model, Y. Gu, Bharat Sukhwani, T. Court","doi":"10.1109/FCCM.2006.64","DOIUrl":null,"url":null,"abstract":"Approximate string matching is fundamental to bioinformatics, and has been the subject of numerous FPGA acceleration studies. We address issues with respect to FPGA implementations of both BLAST- and dynamic programming- (DP) based methods. Our primary contributions are two new algorithms for emulating the seeding and extension phases of BLAST. These operate in a single pass through a database at streaming rate (110 Maa/sec on a VP70 for query sizes up to 600 and 170 Maa/sec on a Virtex4 for query sizes up to 1024), and with no preprocessing other than loading the query string. Further, they use very high sensitivity with no slowdown. While current DP-based methods also operate at streaming rate, generating results can be cumbersome. We address this with a new structure for data extraction. We present results from several implementations","PeriodicalId":123057,"journal":{"name":"2006 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"Single Pass, BLAST-Like, Approximate String Matching on FPGAs\",\"authors\":\"M. Herbordt, Josh Model, Y. Gu, Bharat Sukhwani, T. Court\",\"doi\":\"10.1109/FCCM.2006.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate string matching is fundamental to bioinformatics, and has been the subject of numerous FPGA acceleration studies. We address issues with respect to FPGA implementations of both BLAST- and dynamic programming- (DP) based methods. Our primary contributions are two new algorithms for emulating the seeding and extension phases of BLAST. These operate in a single pass through a database at streaming rate (110 Maa/sec on a VP70 for query sizes up to 600 and 170 Maa/sec on a Virtex4 for query sizes up to 1024), and with no preprocessing other than loading the query string. Further, they use very high sensitivity with no slowdown. While current DP-based methods also operate at streaming rate, generating results can be cumbersome. We address this with a new structure for data extraction. We present results from several implementations\",\"PeriodicalId\":123057,\"journal\":{\"name\":\"2006 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2006.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2006.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single Pass, BLAST-Like, Approximate String Matching on FPGAs
Approximate string matching is fundamental to bioinformatics, and has been the subject of numerous FPGA acceleration studies. We address issues with respect to FPGA implementations of both BLAST- and dynamic programming- (DP) based methods. Our primary contributions are two new algorithms for emulating the seeding and extension phases of BLAST. These operate in a single pass through a database at streaming rate (110 Maa/sec on a VP70 for query sizes up to 600 and 170 Maa/sec on a Virtex4 for query sizes up to 1024), and with no preprocessing other than loading the query string. Further, they use very high sensitivity with no slowdown. While current DP-based methods also operate at streaming rate, generating results can be cumbersome. We address this with a new structure for data extraction. We present results from several implementations