具有控制约束的非线性中立型系统的分段常数最优控制

Jianxin Huang, Ji Sun
{"title":"具有控制约束的非线性中立型系统的分段常数最优控制","authors":"Jianxin Huang, Ji Sun","doi":"10.1109/ICINFA.2015.7279479","DOIUrl":null,"url":null,"abstract":"Optimal control problems for nonlinear neutral systems are considered for nonlinear state-delay system. Using measures theory, the optimal control problem is modified into one consisting of the minimization of a linear form over a set of positive measures satisfying linear constraints; the minimization in the new problem can be approximated by a finite dimensional linear programming problem. The solution of this linear programming can be used to construct an optimal control. A numerical example is given to illustrate the procedure.","PeriodicalId":186975,"journal":{"name":"2015 IEEE International Conference on Information and Automation","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The piecewise-constant optimal control of nonlinear neutral system with control constraints\",\"authors\":\"Jianxin Huang, Ji Sun\",\"doi\":\"10.1109/ICINFA.2015.7279479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal control problems for nonlinear neutral systems are considered for nonlinear state-delay system. Using measures theory, the optimal control problem is modified into one consisting of the minimization of a linear form over a set of positive measures satisfying linear constraints; the minimization in the new problem can be approximated by a finite dimensional linear programming problem. The solution of this linear programming can be used to construct an optimal control. A numerical example is given to illustrate the procedure.\",\"PeriodicalId\":186975,\"journal\":{\"name\":\"2015 IEEE International Conference on Information and Automation\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Information and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2015.7279479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Information and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2015.7279479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对非线性状态时滞系统,研究非线性中立型系统的最优控制问题。利用测度理论,将最优控制问题转化为满足线性约束的一组正测度上线性形式的最小化问题;新问题中的极小值问题可以用一个有限维线性规划问题来近似。该线性规划的解可用于构造最优控制。最后给出了一个数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The piecewise-constant optimal control of nonlinear neutral system with control constraints
Optimal control problems for nonlinear neutral systems are considered for nonlinear state-delay system. Using measures theory, the optimal control problem is modified into one consisting of the minimization of a linear form over a set of positive measures satisfying linear constraints; the minimization in the new problem can be approximated by a finite dimensional linear programming problem. The solution of this linear programming can be used to construct an optimal control. A numerical example is given to illustrate the procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信