{"title":"一种用于心电图像分类的轻量级深度神经网络","authors":"Amrita Rana, Kyung Ki Kim","doi":"10.1109/ISOCC50952.2020.9332968","DOIUrl":null,"url":null,"abstract":"Recent advances in the field of AI have proved that deep neural networks perform and recognize arrhythmia better than cardiologists when trained with a large chunk of data. However, despite the better performance, deep neural networks demand more resources. Therefore, in this paper, a new deep neural network using low resources has been proposed while maintaining high performance, and it is enhanced with a depthwise separable convolution layer for Electrocardiogram (ECG) classification. The algorithm is performed on the Physikalisch-Technische Bundesanstalt (PTB) diagnostic dataset taken from Physionet consisting of two classes: Myocardial Infarction (MI) and Normal (N). Our simulation results show that the proposed lightweight DNN provides high performance with almost the same accuracy as conventional SquezeNets.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Lightweight DNN for ECG Image Classification\",\"authors\":\"Amrita Rana, Kyung Ki Kim\",\"doi\":\"10.1109/ISOCC50952.2020.9332968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in the field of AI have proved that deep neural networks perform and recognize arrhythmia better than cardiologists when trained with a large chunk of data. However, despite the better performance, deep neural networks demand more resources. Therefore, in this paper, a new deep neural network using low resources has been proposed while maintaining high performance, and it is enhanced with a depthwise separable convolution layer for Electrocardiogram (ECG) classification. The algorithm is performed on the Physikalisch-Technische Bundesanstalt (PTB) diagnostic dataset taken from Physionet consisting of two classes: Myocardial Infarction (MI) and Normal (N). Our simulation results show that the proposed lightweight DNN provides high performance with almost the same accuracy as conventional SquezeNets.\",\"PeriodicalId\":270577,\"journal\":{\"name\":\"2020 International SoC Design Conference (ISOCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC50952.2020.9332968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9332968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent advances in the field of AI have proved that deep neural networks perform and recognize arrhythmia better than cardiologists when trained with a large chunk of data. However, despite the better performance, deep neural networks demand more resources. Therefore, in this paper, a new deep neural network using low resources has been proposed while maintaining high performance, and it is enhanced with a depthwise separable convolution layer for Electrocardiogram (ECG) classification. The algorithm is performed on the Physikalisch-Technische Bundesanstalt (PTB) diagnostic dataset taken from Physionet consisting of two classes: Myocardial Infarction (MI) and Normal (N). Our simulation results show that the proposed lightweight DNN provides high performance with almost the same accuracy as conventional SquezeNets.