一种用于心电图像分类的轻量级深度神经网络

Amrita Rana, Kyung Ki Kim
{"title":"一种用于心电图像分类的轻量级深度神经网络","authors":"Amrita Rana, Kyung Ki Kim","doi":"10.1109/ISOCC50952.2020.9332968","DOIUrl":null,"url":null,"abstract":"Recent advances in the field of AI have proved that deep neural networks perform and recognize arrhythmia better than cardiologists when trained with a large chunk of data. However, despite the better performance, deep neural networks demand more resources. Therefore, in this paper, a new deep neural network using low resources has been proposed while maintaining high performance, and it is enhanced with a depthwise separable convolution layer for Electrocardiogram (ECG) classification. The algorithm is performed on the Physikalisch-Technische Bundesanstalt (PTB) diagnostic dataset taken from Physionet consisting of two classes: Myocardial Infarction (MI) and Normal (N). Our simulation results show that the proposed lightweight DNN provides high performance with almost the same accuracy as conventional SquezeNets.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Lightweight DNN for ECG Image Classification\",\"authors\":\"Amrita Rana, Kyung Ki Kim\",\"doi\":\"10.1109/ISOCC50952.2020.9332968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in the field of AI have proved that deep neural networks perform and recognize arrhythmia better than cardiologists when trained with a large chunk of data. However, despite the better performance, deep neural networks demand more resources. Therefore, in this paper, a new deep neural network using low resources has been proposed while maintaining high performance, and it is enhanced with a depthwise separable convolution layer for Electrocardiogram (ECG) classification. The algorithm is performed on the Physikalisch-Technische Bundesanstalt (PTB) diagnostic dataset taken from Physionet consisting of two classes: Myocardial Infarction (MI) and Normal (N). Our simulation results show that the proposed lightweight DNN provides high performance with almost the same accuracy as conventional SquezeNets.\",\"PeriodicalId\":270577,\"journal\":{\"name\":\"2020 International SoC Design Conference (ISOCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC50952.2020.9332968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9332968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人工智能领域的最新进展已经证明,深度神经网络在接受大量数据训练时,比心脏病专家表现和识别心律失常更好。然而,尽管性能更好,深度神经网络需要更多的资源。因此,本文提出了一种低资源、高性能的新型深度神经网络,并通过深度可分卷积层对其进行增强,用于心电图分类。该算法在取自Physionet的Physikalisch-Technische Bundesanstalt (PTB)诊断数据集上执行,该数据集由两类组成:心肌梗死(MI)和正常(N)。我们的模拟结果表明,所提出的轻量级DNN提供了高性能,几乎与传统的squezenet具有相同的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lightweight DNN for ECG Image Classification
Recent advances in the field of AI have proved that deep neural networks perform and recognize arrhythmia better than cardiologists when trained with a large chunk of data. However, despite the better performance, deep neural networks demand more resources. Therefore, in this paper, a new deep neural network using low resources has been proposed while maintaining high performance, and it is enhanced with a depthwise separable convolution layer for Electrocardiogram (ECG) classification. The algorithm is performed on the Physikalisch-Technische Bundesanstalt (PTB) diagnostic dataset taken from Physionet consisting of two classes: Myocardial Infarction (MI) and Normal (N). Our simulation results show that the proposed lightweight DNN provides high performance with almost the same accuracy as conventional SquezeNets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信