基于自回归特征选择和堆叠集成学习的社区综合电力需求预测新框架

Waqas Khan, Shalika Walker, Katarina Katić, W. Zeiler
{"title":"基于自回归特征选择和堆叠集成学习的社区综合电力需求预测新框架","authors":"Waqas Khan, Shalika Walker, Katarina Katić, W. Zeiler","doi":"10.1109/SEST48500.2020.9203507","DOIUrl":null,"url":null,"abstract":"Demand forecast plays an important role in the power industry, as it sets the basis for decision making in power system operation and planning. Electricity consumption forecasting of individual buildings has been widely used for energy management, planning and energy-saving potential identification in the past decade. Yet, insignificant focus has been put on aggregated demand forecast of neighborhoods. In the context of the future smart grid, short- and long-term demand forecast on a neighborhood level will be an essential task for utility providers to better plan generation and solve congestion problems of the distribution network. Based on a comprehensive literature study, an ensemble learning method is proposed for predicting short- and long-term electricity demand of a campus located in the Netherlands. The ensemble model performed better in demand forecasting of neighborhoods compared to individual models for an hour ahead, day ahead and year ahead with R2 values of 0.988, 0.951 and 0.943 respectively. Assessing the demand for cluster of buildings with distinct boundaries such as hospitals and campuses at an aggregated level would reduce the amount of data needed to be stored. The proposed technique contributes to short (single step) and long term (multi step) energy self-sufficiency planning and energy balancing systems on a neighborhood scale.","PeriodicalId":302157,"journal":{"name":"2020 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel framework for autoregressive features selection and stacked ensemble learning for aggregated electricity demand prediction of neighborhoods\",\"authors\":\"Waqas Khan, Shalika Walker, Katarina Katić, W. Zeiler\",\"doi\":\"10.1109/SEST48500.2020.9203507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demand forecast plays an important role in the power industry, as it sets the basis for decision making in power system operation and planning. Electricity consumption forecasting of individual buildings has been widely used for energy management, planning and energy-saving potential identification in the past decade. Yet, insignificant focus has been put on aggregated demand forecast of neighborhoods. In the context of the future smart grid, short- and long-term demand forecast on a neighborhood level will be an essential task for utility providers to better plan generation and solve congestion problems of the distribution network. Based on a comprehensive literature study, an ensemble learning method is proposed for predicting short- and long-term electricity demand of a campus located in the Netherlands. The ensemble model performed better in demand forecasting of neighborhoods compared to individual models for an hour ahead, day ahead and year ahead with R2 values of 0.988, 0.951 and 0.943 respectively. Assessing the demand for cluster of buildings with distinct boundaries such as hospitals and campuses at an aggregated level would reduce the amount of data needed to be stored. The proposed technique contributes to short (single step) and long term (multi step) energy self-sufficiency planning and energy balancing systems on a neighborhood scale.\",\"PeriodicalId\":302157,\"journal\":{\"name\":\"2020 International Conference on Smart Energy Systems and Technologies (SEST)\",\"volume\":\"182 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Smart Energy Systems and Technologies (SEST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEST48500.2020.9203507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST48500.2020.9203507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

需求预测是电力系统运行和规划决策的依据,在电力工业中具有重要的作用。近十年来,个体建筑用电量预测已被广泛应用于能源管理、规划和节能潜力识别。然而,对社区总需求预测的关注却很少。在未来智能电网的背景下,社区层面的短期和长期需求预测将成为电力公司更好地规划发电和解决配电网拥堵问题的重要任务。在综合文献研究的基础上,提出了一种集成学习方法来预测荷兰某校园的短期和长期电力需求。集成模型在1小时、1天和1年的需求预测上的R2分别为0.988、0.951和0.943,优于单个模型。在总体水平上评估对具有明确边界的建筑物群(如医院和校园)的需求将减少需要存储的数据量。所提出的技术有助于短期(单步)和长期(多步)能源自给自足规划和社区尺度的能源平衡系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel framework for autoregressive features selection and stacked ensemble learning for aggregated electricity demand prediction of neighborhoods
Demand forecast plays an important role in the power industry, as it sets the basis for decision making in power system operation and planning. Electricity consumption forecasting of individual buildings has been widely used for energy management, planning and energy-saving potential identification in the past decade. Yet, insignificant focus has been put on aggregated demand forecast of neighborhoods. In the context of the future smart grid, short- and long-term demand forecast on a neighborhood level will be an essential task for utility providers to better plan generation and solve congestion problems of the distribution network. Based on a comprehensive literature study, an ensemble learning method is proposed for predicting short- and long-term electricity demand of a campus located in the Netherlands. The ensemble model performed better in demand forecasting of neighborhoods compared to individual models for an hour ahead, day ahead and year ahead with R2 values of 0.988, 0.951 and 0.943 respectively. Assessing the demand for cluster of buildings with distinct boundaries such as hospitals and campuses at an aggregated level would reduce the amount of data needed to be stored. The proposed technique contributes to short (single step) and long term (multi step) energy self-sufficiency planning and energy balancing systems on a neighborhood scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信