R. Ferreiro, Antonio Martinez, M. Aldegunde, J. Barker
{"title":"用量子输运模拟研究离散掺杂对超尺度FinFET的影响","authors":"R. Ferreiro, Antonio Martinez, M. Aldegunde, J. Barker","doi":"10.1109/ESSDERC.2014.6948831","DOIUrl":null,"url":null,"abstract":"In this paper we study the effect of random discrete dopants in the source/drain on the performance of a 6.6 nm channel length silicon FinFET. Due to the small dimensions of the FinFET, a quantum transport formalism based on the Non-equilibrium Greens Functions has been deployed. The transfer characteristics for several devices, which differ in location and number of dopants have been simulated. Our calculations demonstrated that discrete dopants modify the effective channel length and the height of the source/drain barrier, consequently changing the channel control of the charge. As a consequence, there is a strong effect on the variability of the off-current, sub-threshold slope and threshold voltage. Finally, we have calculated the mean and standard deviation of these parameters to quantify their variability.","PeriodicalId":262652,"journal":{"name":"2014 44th European Solid State Device Research Conference (ESSDERC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of discrete dopants on an ultra-scaled FinFET using quantum transport simulations\",\"authors\":\"R. Ferreiro, Antonio Martinez, M. Aldegunde, J. Barker\",\"doi\":\"10.1109/ESSDERC.2014.6948831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the effect of random discrete dopants in the source/drain on the performance of a 6.6 nm channel length silicon FinFET. Due to the small dimensions of the FinFET, a quantum transport formalism based on the Non-equilibrium Greens Functions has been deployed. The transfer characteristics for several devices, which differ in location and number of dopants have been simulated. Our calculations demonstrated that discrete dopants modify the effective channel length and the height of the source/drain barrier, consequently changing the channel control of the charge. As a consequence, there is a strong effect on the variability of the off-current, sub-threshold slope and threshold voltage. Finally, we have calculated the mean and standard deviation of these parameters to quantify their variability.\",\"PeriodicalId\":262652,\"journal\":{\"name\":\"2014 44th European Solid State Device Research Conference (ESSDERC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 44th European Solid State Device Research Conference (ESSDERC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2014.6948831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 44th European Solid State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2014.6948831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of discrete dopants on an ultra-scaled FinFET using quantum transport simulations
In this paper we study the effect of random discrete dopants in the source/drain on the performance of a 6.6 nm channel length silicon FinFET. Due to the small dimensions of the FinFET, a quantum transport formalism based on the Non-equilibrium Greens Functions has been deployed. The transfer characteristics for several devices, which differ in location and number of dopants have been simulated. Our calculations demonstrated that discrete dopants modify the effective channel length and the height of the source/drain barrier, consequently changing the channel control of the charge. As a consequence, there is a strong effect on the variability of the off-current, sub-threshold slope and threshold voltage. Finally, we have calculated the mean and standard deviation of these parameters to quantify their variability.