无功阻抗基板上的紧凑圆极化微带贴片天线

I. Singh, V. Tripathi, S. Tiwari
{"title":"无功阻抗基板上的紧凑圆极化微带贴片天线","authors":"I. Singh, V. Tripathi, S. Tiwari","doi":"10.1109/CODEC.2012.6509187","DOIUrl":null,"url":null,"abstract":"A reduced-size wideband single-feed circularly polarized microstrip patch antenna is presented for telemetry applications in S-band around 2.4 GHz. In this paper we compare the performance of microstrip patch antenna designed over two layer conventional substrate with different relative permittivity and different height and over a Reactive Impedance Substrate with slot, both of them being constituted with the same substrate layers. In particular we optimize the feeding position and number of reactive elements upon the antenna bandwidth and axial ratio. The proposed structure consists of a slot-loaded patch antenna printed over an optimized metamaterial-inspired reactive impedance substrate (RIS). We demonstrate, step by step, the main role of each antenna element by comparing numerically the performance of various antenna configurations, antenna over a single layer substrate or dual-layer substrate, patch without slot or slot-loaded patch, antenna with or without RIS. The final optimized structure exhibits an axial-ratio bandwidth of about 15% and an impedance bandwidth better than 10%, which is much wider than the conventional printed antenna on the same materials. The return loss pattern of different microstrip patch antenna with and without RIS arrangement is also compared using HFSS simulation software.","PeriodicalId":399616,"journal":{"name":"2012 5th International Conference on Computers and Devices for Communication (CODEC)","volume":"376 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Compact circularly-polarized microstrip patch antenna on Reactive Impedance Substrates\",\"authors\":\"I. Singh, V. Tripathi, S. Tiwari\",\"doi\":\"10.1109/CODEC.2012.6509187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A reduced-size wideband single-feed circularly polarized microstrip patch antenna is presented for telemetry applications in S-band around 2.4 GHz. In this paper we compare the performance of microstrip patch antenna designed over two layer conventional substrate with different relative permittivity and different height and over a Reactive Impedance Substrate with slot, both of them being constituted with the same substrate layers. In particular we optimize the feeding position and number of reactive elements upon the antenna bandwidth and axial ratio. The proposed structure consists of a slot-loaded patch antenna printed over an optimized metamaterial-inspired reactive impedance substrate (RIS). We demonstrate, step by step, the main role of each antenna element by comparing numerically the performance of various antenna configurations, antenna over a single layer substrate or dual-layer substrate, patch without slot or slot-loaded patch, antenna with or without RIS. The final optimized structure exhibits an axial-ratio bandwidth of about 15% and an impedance bandwidth better than 10%, which is much wider than the conventional printed antenna on the same materials. The return loss pattern of different microstrip patch antenna with and without RIS arrangement is also compared using HFSS simulation software.\",\"PeriodicalId\":399616,\"journal\":{\"name\":\"2012 5th International Conference on Computers and Devices for Communication (CODEC)\",\"volume\":\"376 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 5th International Conference on Computers and Devices for Communication (CODEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CODEC.2012.6509187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 5th International Conference on Computers and Devices for Communication (CODEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODEC.2012.6509187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种用于遥测2.4 GHz s波段的小尺寸单馈圆极化微带贴片天线。本文比较了在两层不同相对介电常数和不同高度的传统衬底上设计的微带贴片天线和在同一衬底层构成的带槽的无功阻抗衬底上设计的微带贴片天线的性能。特别是根据天线带宽和轴向比优化馈电位置和无功元件个数。所提出的结构包括在优化的超材料激发的反应阻抗衬底(RIS)上印刷的插槽加载贴片天线。我们通过数值比较各种天线配置、单层基板上的天线或双层基板上的天线、无插槽贴片或插槽加载贴片的贴片、带或不带RIS的天线的性能,逐步论证了每个天线元件的主要作用。优化后的结构轴比带宽约为15%,阻抗带宽优于10%,比相同材料上的传统印刷天线宽得多。利用HFSS仿真软件对不同微带贴片天线布置RIS和不布置RIS时的回波损耗图进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact circularly-polarized microstrip patch antenna on Reactive Impedance Substrates
A reduced-size wideband single-feed circularly polarized microstrip patch antenna is presented for telemetry applications in S-band around 2.4 GHz. In this paper we compare the performance of microstrip patch antenna designed over two layer conventional substrate with different relative permittivity and different height and over a Reactive Impedance Substrate with slot, both of them being constituted with the same substrate layers. In particular we optimize the feeding position and number of reactive elements upon the antenna bandwidth and axial ratio. The proposed structure consists of a slot-loaded patch antenna printed over an optimized metamaterial-inspired reactive impedance substrate (RIS). We demonstrate, step by step, the main role of each antenna element by comparing numerically the performance of various antenna configurations, antenna over a single layer substrate or dual-layer substrate, patch without slot or slot-loaded patch, antenna with or without RIS. The final optimized structure exhibits an axial-ratio bandwidth of about 15% and an impedance bandwidth better than 10%, which is much wider than the conventional printed antenna on the same materials. The return loss pattern of different microstrip patch antenna with and without RIS arrangement is also compared using HFSS simulation software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信