Zhongkai Zhang, Jérémie Dequidt, A. Kruszewski, F. Largilliere, C. Duriez
{"title":"基于实时有限元法的软体机器人运动学建模与观测器控制","authors":"Zhongkai Zhang, Jérémie Dequidt, A. Kruszewski, F. Largilliere, C. Duriez","doi":"10.1109/IROS.2016.7759810","DOIUrl":null,"url":null,"abstract":"This paper aims at providing a novel approach to modeling and controlling soft robots. Based on real-time Finite Element Method (FEM), we obtain a globally defined discrete-time kinematic model in the workspace of soft robots. From the kinematic equations, we deduce the soft-robot Jacobian matrix and discuss the conditions to avoid singular configurations. Then, we propose a novel observer based control methodology where the observer is built by Finite Element Model in this paper to deal with the control problem of soft robots. A closed-loop controller for position control of soft robot is designed based on the discrete-time model with feedback signal being extracted by means of visual servoing. Finally, experimental results on a parallel soft robot show the efficiency and performance of our proposed controller.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Kinematic modeling and observer based control of soft robot using real-time Finite Element Method\",\"authors\":\"Zhongkai Zhang, Jérémie Dequidt, A. Kruszewski, F. Largilliere, C. Duriez\",\"doi\":\"10.1109/IROS.2016.7759810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at providing a novel approach to modeling and controlling soft robots. Based on real-time Finite Element Method (FEM), we obtain a globally defined discrete-time kinematic model in the workspace of soft robots. From the kinematic equations, we deduce the soft-robot Jacobian matrix and discuss the conditions to avoid singular configurations. Then, we propose a novel observer based control methodology where the observer is built by Finite Element Model in this paper to deal with the control problem of soft robots. A closed-loop controller for position control of soft robot is designed based on the discrete-time model with feedback signal being extracted by means of visual servoing. Finally, experimental results on a parallel soft robot show the efficiency and performance of our proposed controller.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinematic modeling and observer based control of soft robot using real-time Finite Element Method
This paper aims at providing a novel approach to modeling and controlling soft robots. Based on real-time Finite Element Method (FEM), we obtain a globally defined discrete-time kinematic model in the workspace of soft robots. From the kinematic equations, we deduce the soft-robot Jacobian matrix and discuss the conditions to avoid singular configurations. Then, we propose a novel observer based control methodology where the observer is built by Finite Element Model in this paper to deal with the control problem of soft robots. A closed-loop controller for position control of soft robot is designed based on the discrete-time model with feedback signal being extracted by means of visual servoing. Finally, experimental results on a parallel soft robot show the efficiency and performance of our proposed controller.