Phil C. Knag, Gregory K. Chen, H. Sumbul, Raghavan Kumar, M. Anders, Himanshu Kaul, S. Hsu, A. Agarwal, Monodeep Kar, Seongjong Kim, R. Krishnamurthy
{"title":"617 TOPS/W全数字二进制神经网络加速器在10nm FinFET CMOS","authors":"Phil C. Knag, Gregory K. Chen, H. Sumbul, Raghavan Kumar, M. Anders, Himanshu Kaul, S. Hsu, A. Agarwal, Monodeep Kar, Seongjong Kim, R. Krishnamurthy","doi":"10.1109/VLSICircuits18222.2020.9162949","DOIUrl":null,"url":null,"abstract":"A 10nm digital Binary Neural Network (BNN) chip implements 1b activations and weights for compute density of 418TOPS/mm2 and memory density of 414KB/mm2. The chip achieves an energy efficiency of 617TOPS/W by leveraging Compute Near Memory (CNM), parallel inner product compute, and Near-Threshold Voltage (NTV) operation. The digital BNN design approaches the energy efficiency of analog in-memory techniques while also ensuring deterministic, scalable, and precise operation.","PeriodicalId":252787,"journal":{"name":"2020 IEEE Symposium on VLSI Circuits","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A 617 TOPS/W All Digital Binary Neural Network Accelerator in 10nm FinFET CMOS\",\"authors\":\"Phil C. Knag, Gregory K. Chen, H. Sumbul, Raghavan Kumar, M. Anders, Himanshu Kaul, S. Hsu, A. Agarwal, Monodeep Kar, Seongjong Kim, R. Krishnamurthy\",\"doi\":\"10.1109/VLSICircuits18222.2020.9162949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 10nm digital Binary Neural Network (BNN) chip implements 1b activations and weights for compute density of 418TOPS/mm2 and memory density of 414KB/mm2. The chip achieves an energy efficiency of 617TOPS/W by leveraging Compute Near Memory (CNM), parallel inner product compute, and Near-Threshold Voltage (NTV) operation. The digital BNN design approaches the energy efficiency of analog in-memory techniques while also ensuring deterministic, scalable, and precise operation.\",\"PeriodicalId\":252787,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Circuits\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSICircuits18222.2020.9162949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSICircuits18222.2020.9162949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 617 TOPS/W All Digital Binary Neural Network Accelerator in 10nm FinFET CMOS
A 10nm digital Binary Neural Network (BNN) chip implements 1b activations and weights for compute density of 418TOPS/mm2 and memory density of 414KB/mm2. The chip achieves an energy efficiency of 617TOPS/W by leveraging Compute Near Memory (CNM), parallel inner product compute, and Near-Threshold Voltage (NTV) operation. The digital BNN design approaches the energy efficiency of analog in-memory techniques while also ensuring deterministic, scalable, and precise operation.