椭圆偏振法研究离子注入损伤

P. Petrik, T. Lohner, O. Polgár, M. Fried
{"title":"椭圆偏振法研究离子注入损伤","authors":"P. Petrik, T. Lohner, O. Polgár, M. Fried","doi":"10.1109/RTP.2008.4690541","DOIUrl":null,"url":null,"abstract":"The optical properties of semiconductors largely depend on the disorder in the crystal structure, especially in the photon energy range near the direct interband transition energies. The E1 and E2 critical point (CP) energies in silicon are about 3.4 eV (∼365 nm) and 4.2 eV (∼295 nm), respectively. These transitions are located in a photon energy range that is available in most commercial spectroscopic ellipsometers, which makes ellipsometry a powerful technique for the characterization of ion implantation-caused damage. Due to the absorption peaks at the CP energies the optical penetration depth is small. For example, in silicon it is about 10 nm and 5 nm at photon energies corresponding to the E1 and E2 CP energies, respectively. It means that current trends towards shallower junctions and lower ion implantation energies make ellipsometry even more sensitive to the near-surface crystal structure, and the sensitivity of depth profiles can further be increased preparing special samples for the measurements using wedge masks. Ellipsometry measures the complex reflectance ratio of the sample in form of a pair of ellipsometric angles (ψ,Δ) that can accurately be measured using commercial ellipsometers. It is more and more important to use proper optical models to evaluate the measured spectra. There are two key points when evaluating ellipsometric spectra measured on ion implanted semiconductors: (i) the parameterization of the dielectric function of disordered material and (ii) the parameterization of the damage depth profile. The dielectric function can be characterized using numerous methods including the generalized critical point model, the standard critical point model, and the model dielectric function. The depth profile can be described using coupled half-Gaussian profiles or error functions. Because ellipsometry is a non-invasive and non-destructive method, it is capable of the measurement of decreasing disorder in situ, during annealing in a vacuum chamber or a furnace. It has also been demonstrated that ellipsometry is a powerful tool for a quick and non-destructive mapping of large surfaces using special optical arrangements and proper optical models. Using this tool, it is possible to map the lateral homogeneity of the dose, to map the thickness of thin surface layers and any other near-surface properties that can be described by proper optical models.","PeriodicalId":317927,"journal":{"name":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ellipsometry on ion implantation induced damage\",\"authors\":\"P. Petrik, T. Lohner, O. Polgár, M. Fried\",\"doi\":\"10.1109/RTP.2008.4690541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optical properties of semiconductors largely depend on the disorder in the crystal structure, especially in the photon energy range near the direct interband transition energies. The E1 and E2 critical point (CP) energies in silicon are about 3.4 eV (∼365 nm) and 4.2 eV (∼295 nm), respectively. These transitions are located in a photon energy range that is available in most commercial spectroscopic ellipsometers, which makes ellipsometry a powerful technique for the characterization of ion implantation-caused damage. Due to the absorption peaks at the CP energies the optical penetration depth is small. For example, in silicon it is about 10 nm and 5 nm at photon energies corresponding to the E1 and E2 CP energies, respectively. It means that current trends towards shallower junctions and lower ion implantation energies make ellipsometry even more sensitive to the near-surface crystal structure, and the sensitivity of depth profiles can further be increased preparing special samples for the measurements using wedge masks. Ellipsometry measures the complex reflectance ratio of the sample in form of a pair of ellipsometric angles (ψ,Δ) that can accurately be measured using commercial ellipsometers. It is more and more important to use proper optical models to evaluate the measured spectra. There are two key points when evaluating ellipsometric spectra measured on ion implanted semiconductors: (i) the parameterization of the dielectric function of disordered material and (ii) the parameterization of the damage depth profile. The dielectric function can be characterized using numerous methods including the generalized critical point model, the standard critical point model, and the model dielectric function. The depth profile can be described using coupled half-Gaussian profiles or error functions. Because ellipsometry is a non-invasive and non-destructive method, it is capable of the measurement of decreasing disorder in situ, during annealing in a vacuum chamber or a furnace. It has also been demonstrated that ellipsometry is a powerful tool for a quick and non-destructive mapping of large surfaces using special optical arrangements and proper optical models. Using this tool, it is possible to map the lateral homogeneity of the dose, to map the thickness of thin surface layers and any other near-surface properties that can be described by proper optical models.\",\"PeriodicalId\":317927,\"journal\":{\"name\":\"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTP.2008.4690541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTP.2008.4690541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

半导体的光学性质在很大程度上取决于晶体结构的无序性,特别是在接近直接带间跃迁能的光子能量范围内。硅中的E1和E2临界点(CP)能量分别约为3.4 eV (~ 365 nm)和4.2 eV (~ 295 nm)。这些跃迁位于大多数商用光谱椭偏仪可获得的光子能量范围内,这使得椭偏仪成为表征离子注入引起的损伤的强大技术。由于在CP能量处存在吸收峰,因此光学穿透深度较小。例如,在硅中,对应于E1和E2 CP能量的光子能量分别约为10 nm和5 nm。这意味着当前的趋势是更浅的结和更低的离子注入能量使椭圆偏振对近表面晶体结构更加敏感,并且可以进一步提高深度剖面的灵敏度,为楔形掩模的测量准备特殊的样品。椭偏仪以一对椭偏角(ψ,Δ)的形式测量样品的复反射率,这可以用商用椭偏仪精确测量。使用合适的光学模型对测量光谱进行评估变得越来越重要。在评价离子注入半导体的椭偏光谱时,有两个关键点:(1)无序材料介电函数的参数化;(2)损伤深度剖面的参数化。电介质函数可以用多种方法来表征,包括广义临界点模型、标准临界点模型和模型电介质函数。深度分布可以用耦合半高斯分布或误差函数来描述。由于椭偏仪是一种非侵入性和非破坏性的方法,它能够在真空室或炉中原位测量退火过程中减少无序。利用特殊的光学排列和合适的光学模型,椭偏仪是快速、无损地绘制大型表面的有力工具。使用该工具,可以绘制剂量的横向均匀性,绘制薄表面层的厚度和任何其他可以通过适当的光学模型描述的近表面性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ellipsometry on ion implantation induced damage
The optical properties of semiconductors largely depend on the disorder in the crystal structure, especially in the photon energy range near the direct interband transition energies. The E1 and E2 critical point (CP) energies in silicon are about 3.4 eV (∼365 nm) and 4.2 eV (∼295 nm), respectively. These transitions are located in a photon energy range that is available in most commercial spectroscopic ellipsometers, which makes ellipsometry a powerful technique for the characterization of ion implantation-caused damage. Due to the absorption peaks at the CP energies the optical penetration depth is small. For example, in silicon it is about 10 nm and 5 nm at photon energies corresponding to the E1 and E2 CP energies, respectively. It means that current trends towards shallower junctions and lower ion implantation energies make ellipsometry even more sensitive to the near-surface crystal structure, and the sensitivity of depth profiles can further be increased preparing special samples for the measurements using wedge masks. Ellipsometry measures the complex reflectance ratio of the sample in form of a pair of ellipsometric angles (ψ,Δ) that can accurately be measured using commercial ellipsometers. It is more and more important to use proper optical models to evaluate the measured spectra. There are two key points when evaluating ellipsometric spectra measured on ion implanted semiconductors: (i) the parameterization of the dielectric function of disordered material and (ii) the parameterization of the damage depth profile. The dielectric function can be characterized using numerous methods including the generalized critical point model, the standard critical point model, and the model dielectric function. The depth profile can be described using coupled half-Gaussian profiles or error functions. Because ellipsometry is a non-invasive and non-destructive method, it is capable of the measurement of decreasing disorder in situ, during annealing in a vacuum chamber or a furnace. It has also been demonstrated that ellipsometry is a powerful tool for a quick and non-destructive mapping of large surfaces using special optical arrangements and proper optical models. Using this tool, it is possible to map the lateral homogeneity of the dose, to map the thickness of thin surface layers and any other near-surface properties that can be described by proper optical models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信