基于学习风格的MOOC课程学习者聚类评价

Ali El Mezouary, Brahim Hmedna, Omar Baz
{"title":"基于学习风格的MOOC课程学习者聚类评价","authors":"Ali El Mezouary, Brahim Hmedna, Omar Baz","doi":"10.1109/ICCSRE.2019.8807503","DOIUrl":null,"url":null,"abstract":"This article presents an approach for the automatic detection of learners' learning styles from their traces when they interact with a MOOC environment. The approach in question has been evaluated in particular to identify learners' learning styles associated with the active/reflective dimension, with reference to the Felder-Silverman model (FSLSM), which is one of the most popular models in the learning technology.","PeriodicalId":360150,"journal":{"name":"2019 International Conference of Computer Science and Renewable Energies (ICCSRE)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An evaluation of learner clustering based on learning styles in MOOC course\",\"authors\":\"Ali El Mezouary, Brahim Hmedna, Omar Baz\",\"doi\":\"10.1109/ICCSRE.2019.8807503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an approach for the automatic detection of learners' learning styles from their traces when they interact with a MOOC environment. The approach in question has been evaluated in particular to identify learners' learning styles associated with the active/reflective dimension, with reference to the Felder-Silverman model (FSLSM), which is one of the most popular models in the learning technology.\",\"PeriodicalId\":360150,\"journal\":{\"name\":\"2019 International Conference of Computer Science and Renewable Energies (ICCSRE)\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference of Computer Science and Renewable Energies (ICCSRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSRE.2019.8807503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference of Computer Science and Renewable Energies (ICCSRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSRE.2019.8807503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种从学习者与MOOC环境交互时的痕迹中自动检测学习者学习风格的方法。参考学习技术中最流行的模型之一Felder-Silverman模型(FSLSM),对所讨论的方法进行了特别评估,以确定与主动/反思维度相关的学习者的学习风格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An evaluation of learner clustering based on learning styles in MOOC course
This article presents an approach for the automatic detection of learners' learning styles from their traces when they interact with a MOOC environment. The approach in question has been evaluated in particular to identify learners' learning styles associated with the active/reflective dimension, with reference to the Felder-Silverman model (FSLSM), which is one of the most popular models in the learning technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信