{"title":"光学手性超材料的全波计算分析","authors":"S. Güler, B. Solak, Uğur Meriç Gür, Ö. Ergül","doi":"10.1109/EMCT.2017.8090376","DOIUrl":null,"url":null,"abstract":"We present computational analysis of optical chiral metamaterials that consist of helical metallic elements. At optical frequencies, metals are modeled as penetrable objects with plasmonic properties. A rigorous implementation based on boundary element methods and the multilevel fast multipole algorithm is used for efficient and accurate analysis of three-dimensional structures. Numerical results demonstrate interesting polarization-rotating characteristics of such arrays with helical elements, as well as their complex responses depending on geometric parameters.","PeriodicalId":104929,"journal":{"name":"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-wave computational analysis of optical chiral metamaterials\",\"authors\":\"S. Güler, B. Solak, Uğur Meriç Gür, Ö. Ergül\",\"doi\":\"10.1109/EMCT.2017.8090376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present computational analysis of optical chiral metamaterials that consist of helical metallic elements. At optical frequencies, metals are modeled as penetrable objects with plasmonic properties. A rigorous implementation based on boundary element methods and the multilevel fast multipole algorithm is used for efficient and accurate analysis of three-dimensional structures. Numerical results demonstrate interesting polarization-rotating characteristics of such arrays with helical elements, as well as their complex responses depending on geometric parameters.\",\"PeriodicalId\":104929,\"journal\":{\"name\":\"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCT.2017.8090376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCT.2017.8090376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Full-wave computational analysis of optical chiral metamaterials
We present computational analysis of optical chiral metamaterials that consist of helical metallic elements. At optical frequencies, metals are modeled as penetrable objects with plasmonic properties. A rigorous implementation based on boundary element methods and the multilevel fast multipole algorithm is used for efficient and accurate analysis of three-dimensional structures. Numerical results demonstrate interesting polarization-rotating characteristics of such arrays with helical elements, as well as their complex responses depending on geometric parameters.