{"title":"光电多芯片模块上倒装键合光电二极管与聚酰亚胺光波导之间的光互连","authors":"H. Takahara, S. Matsui, S. Koike","doi":"10.1109/LEOSST.1994.700433","DOIUrl":null,"url":null,"abstract":"An opto-electronic multichip module (OE-MCM) has been developed for high speed and wide-band communication systems(1). In this work, the opto-electronic performance for the interconnection between flip-chip bonded photodiodes (PDs) and fluorinated polyimide waveguides on the OE-substrtate is studied. A 3.5 GHzbandwidth response of the interconnection was achieved by using total internal reflection (TIR) mirrors. Low loss (0.4 dB/cm at a 1.3,U m wavelength) polyimide waveguides (50 f l m wide and 87.5 p m high) were fabricated on a copper-polyimide multilayer substrate by using a conventional MCM process and reactive ion etching(2) (3). The waveguide-to-PD interconnection is attained by using a TIR mirror fabricated at the edge of the waveguides, while tilting the OE-substrate to the normal direction of the cathode. The mirror angle was easily determined to be 44.5\" from the radiated reflection-beam angle by using the far-field pattern method. The reflection loss of the mirror is less than 1.5 dB at a 1.3-,U m wavelength. An InP PD was easily flip-chip bonded with conventional Sn/Pb (60/40) solder balls positioned in the solder ball guides. The propagated light in the waveguide is totally reflected by the mirror. The bandwidth was measured while propagating the light using a heterodyne optical sweeper (1.55-,U m wavelength). The output of the PD was connected directly to a component analyzer. The frequency response of the PD with a sensitive diameter of 80 p m is shown in Fig. 4. bandwidth was determined to be 3.5 GHz, being limited by the PD response. This optical interconnection will therefore be useful in developing high speed and wide-band OE-MCMs. A schematic representation of the OE-MCM is shown in Fig. 1.","PeriodicalId":379594,"journal":{"name":"Proceedings of IEE/LEOS Summer Topical Meetings: Integrated Optoelectronics","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optical Interconnection Between Flip-chip Bonded Photodiodes And Optical Polyimide Waveguides On An Opto-electronic Multichip Module\",\"authors\":\"H. Takahara, S. Matsui, S. Koike\",\"doi\":\"10.1109/LEOSST.1994.700433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An opto-electronic multichip module (OE-MCM) has been developed for high speed and wide-band communication systems(1). In this work, the opto-electronic performance for the interconnection between flip-chip bonded photodiodes (PDs) and fluorinated polyimide waveguides on the OE-substrtate is studied. A 3.5 GHzbandwidth response of the interconnection was achieved by using total internal reflection (TIR) mirrors. Low loss (0.4 dB/cm at a 1.3,U m wavelength) polyimide waveguides (50 f l m wide and 87.5 p m high) were fabricated on a copper-polyimide multilayer substrate by using a conventional MCM process and reactive ion etching(2) (3). The waveguide-to-PD interconnection is attained by using a TIR mirror fabricated at the edge of the waveguides, while tilting the OE-substrate to the normal direction of the cathode. The mirror angle was easily determined to be 44.5\\\" from the radiated reflection-beam angle by using the far-field pattern method. The reflection loss of the mirror is less than 1.5 dB at a 1.3-,U m wavelength. An InP PD was easily flip-chip bonded with conventional Sn/Pb (60/40) solder balls positioned in the solder ball guides. The propagated light in the waveguide is totally reflected by the mirror. The bandwidth was measured while propagating the light using a heterodyne optical sweeper (1.55-,U m wavelength). The output of the PD was connected directly to a component analyzer. The frequency response of the PD with a sensitive diameter of 80 p m is shown in Fig. 4. bandwidth was determined to be 3.5 GHz, being limited by the PD response. This optical interconnection will therefore be useful in developing high speed and wide-band OE-MCMs. A schematic representation of the OE-MCM is shown in Fig. 1.\",\"PeriodicalId\":379594,\"journal\":{\"name\":\"Proceedings of IEE/LEOS Summer Topical Meetings: Integrated Optoelectronics\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEE/LEOS Summer Topical Meetings: Integrated Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LEOSST.1994.700433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEE/LEOS Summer Topical Meetings: Integrated Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LEOSST.1994.700433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
一种用于高速宽带通信系统的光电多芯片模块(OE-MCM)已经被开发出来(1)。本文研究了倒装键合光电二极管(PDs)与氟化聚酰亚胺波导在oe衬底上互连的光电性能。通过使用全内反射(TIR)镜,实现了3.5 ghz的带宽响应。利用传统的MCM工艺和反应离子蚀刻(2),在铜-聚酰亚胺多层衬底上制作了低损耗(在1.3 μ m波长下0.4 dB/cm)的聚酰亚胺波导(宽50 f / m,高87.5 p / m)。波导与pd的互连是通过在波导边缘制作TIR反射镜实现的,同时将e-衬底倾斜到阴极的法向。利用远场方向图法可以很容易地确定反射镜角度为辐射反射束角的44.5”。在1.3 μ m波长处,反射镜的反射损耗小于1.5 dB。InP PD很容易与位于锡球导轨中的传统Sn/Pb(60/40)锡球进行倒装键合。波导中传播的光被镜面完全反射。在使用外差光扫频器(1.55-,μ m波长)传播光时测量带宽。PD的输出直接连接到组件分析仪。灵敏度直径为80 pm的PD的频率响应如图4所示。受PD响应限制,确定带宽为3.5 GHz。因此,这种光互连将有助于开发高速宽带oe - mcm。OE-MCM的示意图如图1所示。
Optical Interconnection Between Flip-chip Bonded Photodiodes And Optical Polyimide Waveguides On An Opto-electronic Multichip Module
An opto-electronic multichip module (OE-MCM) has been developed for high speed and wide-band communication systems(1). In this work, the opto-electronic performance for the interconnection between flip-chip bonded photodiodes (PDs) and fluorinated polyimide waveguides on the OE-substrtate is studied. A 3.5 GHzbandwidth response of the interconnection was achieved by using total internal reflection (TIR) mirrors. Low loss (0.4 dB/cm at a 1.3,U m wavelength) polyimide waveguides (50 f l m wide and 87.5 p m high) were fabricated on a copper-polyimide multilayer substrate by using a conventional MCM process and reactive ion etching(2) (3). The waveguide-to-PD interconnection is attained by using a TIR mirror fabricated at the edge of the waveguides, while tilting the OE-substrate to the normal direction of the cathode. The mirror angle was easily determined to be 44.5" from the radiated reflection-beam angle by using the far-field pattern method. The reflection loss of the mirror is less than 1.5 dB at a 1.3-,U m wavelength. An InP PD was easily flip-chip bonded with conventional Sn/Pb (60/40) solder balls positioned in the solder ball guides. The propagated light in the waveguide is totally reflected by the mirror. The bandwidth was measured while propagating the light using a heterodyne optical sweeper (1.55-,U m wavelength). The output of the PD was connected directly to a component analyzer. The frequency response of the PD with a sensitive diameter of 80 p m is shown in Fig. 4. bandwidth was determined to be 3.5 GHz, being limited by the PD response. This optical interconnection will therefore be useful in developing high speed and wide-band OE-MCMs. A schematic representation of the OE-MCM is shown in Fig. 1.