考虑亚微米图样制造极限的良率预测方法

N. Hattori, M. Ikeno, H. Nagata
{"title":"考虑亚微米图样制造极限的良率预测方法","authors":"N. Hattori, M. Ikeno, H. Nagata","doi":"10.1109/ISSM.1994.729443","DOIUrl":null,"url":null,"abstract":"Many random defects are caused by deposited particles during the manufacturing processes. Therefore, defect density and yield have been predicted from the information of particle characterization and the feature analysis of designed patterns to take effective measures for yield enhancement. The report gives the procedure of this prediction and discusses the parameters for the use in the critical fabrication size. Our parametric improvement provides an accurate prediction.","PeriodicalId":114928,"journal":{"name":"International Symposium on Semiconductor Manufacturing, Extended Abstracts of ISSM","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Yield Prediction Method Considering The Limit Of Sub-Micron Pattern Fabrication\",\"authors\":\"N. Hattori, M. Ikeno, H. Nagata\",\"doi\":\"10.1109/ISSM.1994.729443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many random defects are caused by deposited particles during the manufacturing processes. Therefore, defect density and yield have been predicted from the information of particle characterization and the feature analysis of designed patterns to take effective measures for yield enhancement. The report gives the procedure of this prediction and discusses the parameters for the use in the critical fabrication size. Our parametric improvement provides an accurate prediction.\",\"PeriodicalId\":114928,\"journal\":{\"name\":\"International Symposium on Semiconductor Manufacturing, Extended Abstracts of ISSM\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Semiconductor Manufacturing, Extended Abstracts of ISSM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSM.1994.729443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Semiconductor Manufacturing, Extended Abstracts of ISSM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM.1994.729443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

许多随机缺陷是由制造过程中沉积的颗粒引起的。因此,从颗粒表征信息和设计图案特征分析中预测缺陷密度和良率,采取有效措施提高良率。报告给出了这种预测的过程,并讨论了在临界制造尺寸中使用的参数。我们的参数改进提供了一个准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Yield Prediction Method Considering The Limit Of Sub-Micron Pattern Fabrication
Many random defects are caused by deposited particles during the manufacturing processes. Therefore, defect density and yield have been predicted from the information of particle characterization and the feature analysis of designed patterns to take effective measures for yield enhancement. The report gives the procedure of this prediction and discusses the parameters for the use in the critical fabrication size. Our parametric improvement provides an accurate prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信