面向显著性的目标图像重排序

Chao Xu, Yuan Gao, Miaojing Shi
{"title":"面向显著性的目标图像重排序","authors":"Chao Xu, Yuan Gao, Miaojing Shi","doi":"10.1109/ICECS.2014.7049999","DOIUrl":null,"url":null,"abstract":"For image retrieval, most users hope to retrieve a certain salient object instead of an obscure pattern in an image. This paper presents a novel object re-ranking algorithm based on visual saliency, which is employed to detect salient object regions in an image. The re-ranking is carried out with a SVM classifier on the salient regions to assure that the images ranked on the top of the list exhibit salient object pictures. To speed up the classifier training, a small code book (1K) is chosen. To improve the re-ranking efficacy, we employ the posterior probability of the salient region to adjust re-ranking, and derive an approximate formula of the posterior probability of the salient region. The formula is based on a hierarchical model, containing spatial information to compensate the feature disorder of the model of bags of visual words (BoVW). The posterior probability is calculated offline, so the online efficiency of re-ranking is high. Experiments demonstrate that our algorithm significantly improves online efficiency and saliency while possesses high accuracy of image retrieval.","PeriodicalId":133747,"journal":{"name":"2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saliency oriented object image re-ranking\",\"authors\":\"Chao Xu, Yuan Gao, Miaojing Shi\",\"doi\":\"10.1109/ICECS.2014.7049999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For image retrieval, most users hope to retrieve a certain salient object instead of an obscure pattern in an image. This paper presents a novel object re-ranking algorithm based on visual saliency, which is employed to detect salient object regions in an image. The re-ranking is carried out with a SVM classifier on the salient regions to assure that the images ranked on the top of the list exhibit salient object pictures. To speed up the classifier training, a small code book (1K) is chosen. To improve the re-ranking efficacy, we employ the posterior probability of the salient region to adjust re-ranking, and derive an approximate formula of the posterior probability of the salient region. The formula is based on a hierarchical model, containing spatial information to compensate the feature disorder of the model of bags of visual words (BoVW). The posterior probability is calculated offline, so the online efficiency of re-ranking is high. Experiments demonstrate that our algorithm significantly improves online efficiency and saliency while possesses high accuracy of image retrieval.\",\"PeriodicalId\":133747,\"journal\":{\"name\":\"2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.2014.7049999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2014.7049999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于图像检索,大多数用户都希望检索到某个突出的对象,而不是图像中模糊的模式。提出了一种新的基于视觉显著性的目标重排序算法,用于检测图像中的显著目标区域。使用SVM分类器对显著区域进行重新排序,以确保排在列表顶部的图像显示显著目标图像。为了加快分类器的训练速度,我们选择了一本很小的代码本(1K)。为了提高重新排序的有效性,我们采用显著区域的后验概率来调整重新排序,并推导出显著区域后验概率的近似公式。该公式基于层次模型,包含空间信息来补偿视觉词袋(BoVW)模型的特征无序性。后验概率是离线计算的,因此重新排序的在线效率高。实验表明,该算法显著提高了在线效率和显著性,同时具有较高的图像检索精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Saliency oriented object image re-ranking
For image retrieval, most users hope to retrieve a certain salient object instead of an obscure pattern in an image. This paper presents a novel object re-ranking algorithm based on visual saliency, which is employed to detect salient object regions in an image. The re-ranking is carried out with a SVM classifier on the salient regions to assure that the images ranked on the top of the list exhibit salient object pictures. To speed up the classifier training, a small code book (1K) is chosen. To improve the re-ranking efficacy, we employ the posterior probability of the salient region to adjust re-ranking, and derive an approximate formula of the posterior probability of the salient region. The formula is based on a hierarchical model, containing spatial information to compensate the feature disorder of the model of bags of visual words (BoVW). The posterior probability is calculated offline, so the online efficiency of re-ranking is high. Experiments demonstrate that our algorithm significantly improves online efficiency and saliency while possesses high accuracy of image retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信