集成电路制造诊断系统

J. Kibarian, A. Strojwas
{"title":"集成电路制造诊断系统","authors":"J. Kibarian, A. Strojwas","doi":"10.1109/ASMC.1991.167392","DOIUrl":null,"url":null,"abstract":"A diagnostic system for intrawafer variability analysis which is part of the CMU (Carnegie Mellon University) diagnostic system is described. The system presented can be used to analyze parametric data for the purposes of understanding the causes of yield loss. Data from an industrial fabrication line were analyzed to show the validity of the approach. Key features of this approach are a brief learning phase and the ability to use both spatial information and electrical characteristics in the analysis. The intrawafer variability analysis system can interpret the data by comparing the features with either historical data, test structure measurements, or simulated sensitivity information. This is possible because of the flexibility built into the feature selection method.<<ETX>>","PeriodicalId":177186,"journal":{"name":"[1991 Proceedings] IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop","volume":"86 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic system for IC manufacturing\",\"authors\":\"J. Kibarian, A. Strojwas\",\"doi\":\"10.1109/ASMC.1991.167392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A diagnostic system for intrawafer variability analysis which is part of the CMU (Carnegie Mellon University) diagnostic system is described. The system presented can be used to analyze parametric data for the purposes of understanding the causes of yield loss. Data from an industrial fabrication line were analyzed to show the validity of the approach. Key features of this approach are a brief learning phase and the ability to use both spatial information and electrical characteristics in the analysis. The intrawafer variability analysis system can interpret the data by comparing the features with either historical data, test structure measurements, or simulated sensitivity information. This is possible because of the flexibility built into the feature selection method.<<ETX>>\",\"PeriodicalId\":177186,\"journal\":{\"name\":\"[1991 Proceedings] IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop\",\"volume\":\"86 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991 Proceedings] IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC.1991.167392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.1991.167392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了卡耐基梅隆大学(Carnegie Mellon University)诊断系统的晶圆内部变异性分析诊断系统。该系统可用于分析参数数据,以了解产量损失的原因。通过对某工业生产线数据的分析,验证了该方法的有效性。该方法的主要特点是学习阶段短,能够在分析中同时使用空间信息和电特性。晶圆内变异性分析系统可以通过比较历史数据、测试结构测量或模拟灵敏度信息的特征来解释数据。这是可能的,因为内置在特征选择方法中的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnostic system for IC manufacturing
A diagnostic system for intrawafer variability analysis which is part of the CMU (Carnegie Mellon University) diagnostic system is described. The system presented can be used to analyze parametric data for the purposes of understanding the causes of yield loss. Data from an industrial fabrication line were analyzed to show the validity of the approach. Key features of this approach are a brief learning phase and the ability to use both spatial information and electrical characteristics in the analysis. The intrawafer variability analysis system can interpret the data by comparing the features with either historical data, test structure measurements, or simulated sensitivity information. This is possible because of the flexibility built into the feature selection method.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信