基于随机抽样支持向量机的图像检索软查询扩展

Zhen Zhang, Rongrong Ji, H. Yao, Pengfei Xu, Jicheng Wang
{"title":"基于随机抽样支持向量机的图像检索软查询扩展","authors":"Zhen Zhang, Rongrong Ji, H. Yao, Pengfei Xu, Jicheng Wang","doi":"10.1109/ICIG.2007.151","DOIUrl":null,"url":null,"abstract":"This paper focuses on the problem that relevance feedback schemes based on support vector machines (RF-SVM) always give a poor performance when the numbers of positive/negative feedback examples are strongly asymmetric. To address this issue, we propose a random sampling SVM based query expansion for relevance feedback learning. Firstly, we adopt a random sampling method to construct multiple asymmetric bagging SVM classifiers (hard or binary SVM each) and aggregate them to form a compound SVM classifier by classifier committee voting. Subsequently, the voting results are combined with query expansion to sort the final feedback ranking results. The proposed method can effectively restrain the negative effect of the sample asymmetry. Thus it provides a good error-tolerant ability to training data. Experimental results on a subset of COREL image database demonstrate the effectiveness and robustness of the proposed approach.","PeriodicalId":367106,"journal":{"name":"Fourth International Conference on Image and Graphics (ICIG 2007)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Random Sampling SVM Based Soft Query Expansion for Image Retrieval\",\"authors\":\"Zhen Zhang, Rongrong Ji, H. Yao, Pengfei Xu, Jicheng Wang\",\"doi\":\"10.1109/ICIG.2007.151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the problem that relevance feedback schemes based on support vector machines (RF-SVM) always give a poor performance when the numbers of positive/negative feedback examples are strongly asymmetric. To address this issue, we propose a random sampling SVM based query expansion for relevance feedback learning. Firstly, we adopt a random sampling method to construct multiple asymmetric bagging SVM classifiers (hard or binary SVM each) and aggregate them to form a compound SVM classifier by classifier committee voting. Subsequently, the voting results are combined with query expansion to sort the final feedback ranking results. The proposed method can effectively restrain the negative effect of the sample asymmetry. Thus it provides a good error-tolerant ability to training data. Experimental results on a subset of COREL image database demonstrate the effectiveness and robustness of the proposed approach.\",\"PeriodicalId\":367106,\"journal\":{\"name\":\"Fourth International Conference on Image and Graphics (ICIG 2007)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Conference on Image and Graphics (ICIG 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIG.2007.151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Image and Graphics (ICIG 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2007.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

研究了基于支持向量机(RF-SVM)的相关反馈方案在正负反馈样本数量强烈不对称的情况下性能较差的问题。为了解决这个问题,我们提出了一种基于随机抽样支持向量机的查询扩展方法来进行相关反馈学习。首先,采用随机抽样的方法构建多个非对称套袋SVM分类器(分别为硬支持向量机和二元支持向量机),并通过分类器委员会投票将其聚合形成复合支持向量机分类器。随后,将投票结果与查询扩展相结合,对最终的反馈排序结果进行排序。该方法可以有效地抑制样品不对称的负面影响。从而对训练数据提供了良好的容错能力。在COREL图像数据库子集上的实验结果证明了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Sampling SVM Based Soft Query Expansion for Image Retrieval
This paper focuses on the problem that relevance feedback schemes based on support vector machines (RF-SVM) always give a poor performance when the numbers of positive/negative feedback examples are strongly asymmetric. To address this issue, we propose a random sampling SVM based query expansion for relevance feedback learning. Firstly, we adopt a random sampling method to construct multiple asymmetric bagging SVM classifiers (hard or binary SVM each) and aggregate them to form a compound SVM classifier by classifier committee voting. Subsequently, the voting results are combined with query expansion to sort the final feedback ranking results. The proposed method can effectively restrain the negative effect of the sample asymmetry. Thus it provides a good error-tolerant ability to training data. Experimental results on a subset of COREL image database demonstrate the effectiveness and robustness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信