社交网络的统计方法

M. Marino, A. Stawinoga
{"title":"社交网络的统计方法","authors":"M. Marino, A. Stawinoga","doi":"10.51936/bqam2044","DOIUrl":null,"url":null,"abstract":"Network analysis and modeling have received considerable attention in recent times and require the solution of intricate mathematical problems, e.g. the problem of enumeration graphs under specified conditions, finding the largest complete graph and so on. Even though a lot of well-known algorithms have been proposed, some problems are still challenges from a computational point of view and their fast solutions are thus of great practical interest. This paper focuses on some parallel algorithms for social network analysis. In particular, a review of some existing parallel algorithms is carried out and a new parallel algorithm is proposed for parameters estimation in Exponential Random Graph Models.","PeriodicalId":242585,"journal":{"name":"Advances in Methodology and Statistics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical methods for social networks\",\"authors\":\"M. Marino, A. Stawinoga\",\"doi\":\"10.51936/bqam2044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network analysis and modeling have received considerable attention in recent times and require the solution of intricate mathematical problems, e.g. the problem of enumeration graphs under specified conditions, finding the largest complete graph and so on. Even though a lot of well-known algorithms have been proposed, some problems are still challenges from a computational point of view and their fast solutions are thus of great practical interest. This paper focuses on some parallel algorithms for social network analysis. In particular, a review of some existing parallel algorithms is carried out and a new parallel algorithm is proposed for parameters estimation in Exponential Random Graph Models.\",\"PeriodicalId\":242585,\"journal\":{\"name\":\"Advances in Methodology and Statistics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Methodology and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51936/bqam2044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methodology and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51936/bqam2044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,网络分析和建模受到了广泛的关注,需要解决复杂的数学问题,如特定条件下的枚举图问题、寻找最大的完全图问题等。尽管已经提出了许多著名的算法,但从计算的角度来看,有些问题仍然是挑战,因此它们的快速解决具有很大的实际意义。本文重点研究了一些用于社会网络分析的并行算法。在对现有并行算法进行综述的基础上,提出了一种新的用于指数随机图模型参数估计的并行算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical methods for social networks
Network analysis and modeling have received considerable attention in recent times and require the solution of intricate mathematical problems, e.g. the problem of enumeration graphs under specified conditions, finding the largest complete graph and so on. Even though a lot of well-known algorithms have been proposed, some problems are still challenges from a computational point of view and their fast solutions are thus of great practical interest. This paper focuses on some parallel algorithms for social network analysis. In particular, a review of some existing parallel algorithms is carried out and a new parallel algorithm is proposed for parameters estimation in Exponential Random Graph Models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信